Pomiar rozkładu temperatury w strefie skrawania za pomocą kamery termowizyjnej

Analysis of temperature distribution layout within the cutting zone by means of an infrared camera

PIOTR KISZKA WIT GRZESIK JÖEL RECH*

Przedstawiono wyniki pomiaru rozkładu temperatury w strefie skrawania uzyskane za pomocą kamery termowizyjnej podczas toczenia ortogonalnego żeliwa sferoidalnego (perlityczno-ferrytycznego) ostrzami z ceramiki azotkowej i CBN. Program eksperymentu obejmował pomiar średniej i maksymalnej temperatury kontaktowej oraz uzyskanie kolorowych termogramów.

SŁOWA KLUCZOWE: kamera termowizyjna, obróbka skrawaniem, żeliwo sferoidalne

Reported are the results of temperature distribution measurements in the cutting zone carried out by means of a thermal image camera during orthogonal turning of the pearlitic-ferritic (PF) spheroidal cast iron (EN-GJS-500-7 grade) using CBN and nitride ceramic tools. The experiment consisted of measurements of the average and the maximum cutting contact temperatures and color thermal photographs.

KEYWORDS: infrared camera, machining, spheroidal cast iron

W badaniach doświadczalnych procesu skrawania bardzo istotne miejsce zajmują pomiary temperatury. Na ich podstawie dobiera się warunki obróbki w taki sposób, by zachować właściwości skrawne materiału narzędziowego i osiągnąć określoną dokładność obróbki oraz przewidzieć zużycie ostrza [1]. Zjawiska cieplne, które występują w strefie skrawania, a przede wszystkim temperatura ostrza, mają duży wpływ na trwałość narzędzia, a w konsekwencji – na koszty i wydajność obróbki [2].

Dzięki postępowi w dziedzinie bezkontaktowych pomiarów temperatury, które bazują na rejestracji energii cieplnej emitowanej przez badany obiekt (o temperaturze wyższej od zera absolutnego), stało się możliwe zastosowanie tych metod do identyfikacji pola temperatury w procesie skrawania [2], a tym samym wyznaczenia średniej i maksymalnej temperatury skrawania. Technika wykorzystująca zjawisko promieniowania podczerwonego jest prawdopodobnie drugą najczęściej używaną metodą pomiaru temperatury w procesie skrawania [3]. Pozwala ona na określenie wartości temperatury nawet w trudnych warunkach.

Budowa stanowiska badawczego wykorzystującego radiacyjne metody pomiaru nastręcza jednak wiele problemów, takich jak [4]:

 konieczność wzorcowania układu, aby określić emisyjność materiału obrabianego lub narzędzia skrawającego,

określenie i udostępnienie miejsca pomiarów.

Wskazaniem do przeprowadzenia pomiarów temperatury kontaktowej za pomocą kamery termowizyjnej było zastosowanie do badań narzędzi z Si₃N₄ – w ich przypadku nie sprawdzają się bowiem techniki pomiaru oparte na przewodzeniu. Za cel badań przyjęto zmierzenie średniej i maksymalnej temperatury kontaktowej podczas skrawania ortogonalnego żeliwa sferoidalnego siedmioma narzędziami z ceramiki azotkowej i CBN.

Badania eksperymentalne zrealizowano w Laboratorium Tribologii i Dynamiki Systemów (LTDS) należącym do Ecole Nationale d'Ingénieurs de Saint-Etienne (ENISE).

Warunki i metodyka badań doświadczalnych

■ Właściwości i mikrostruktura żeliwa. Badania doświadczalne przeprowadzono na próbkach z żeliwa sferoidalnego perlityczno-ferrytycznego o symbolu EN-GJS-500-7 zawierającego ok. 50% perlitu, 40% ferrytu i 10% grafitu. Skład chemiczny obrabianego materiału przedstawiono w tabl. I. Średnia twardość badanego materiału wynosiła ok. 180 HB.

TABLICA I. Skład chemiczny żeliwa sferoidalnego [5]

Składnik stopowy	С	Si	Cu	Mg	Mn	Р	S	Cr	Zn
% atomowy	3,78	2,46	0,01	0,05	0,32	0,038	0,065	0,031	0,004

Rys. 1. Zdjęcia skaningowe mikrostruktury żeliwa sferoidalnego perlitycznou--ferrytycznego: a) powiększenie 633×, b) powiększenie 100× [6]

[6] ¹²⁰µm <u>2006 W</u> <u>C2 550</u> ¹²⁰µm <u>2006 W</u> <u>2006 W</u> <u>2006 W</u> <u>2006 W</u> <u>2007 W</u> <u>2006 W</u> <u>2000 W</u> <u>2006 W</u> <u>2006 W</u> <u>2000 W</u> <u>2006 W</u> <u>2006 W</u>

Obraz mikrostruktury żeliwa sferoidalnego (rys. 1) wykonano na mikroskopie skaningowym ZEISS EVO MA25. Zdjęcie skaningowe żeliwa EN-GJS-500-7 potwierdza obecność kulistego grafitu.

Narzędzia skrawające i warunki skrawania. W badaniach posługiwano się narzędziami z CBN (BL), powlekanej ceramiki azotkowej (CC) i niepowlekanej ceramiki azotkowej (CN). Producentem wszystkich testowanych narzędzi była firma Sandvik Coromant.

^{*} Dr inż. Piotr Kiszka (peter.kiszka@gmail.com) – RAFAKO S.A., prof. dr hab. inż. Wit Grzesik (w.grzesik@po.opole.pl) – Katedra Technologii Maszyn i Automatyzacji Produkcji, Wydział Mechaniczny Politechniki Opolskiej, prof. Dr Sc. Jöel Rech (joel.rech@enise.fr) – ENISE Saint-Etienne, Labs for Tribology and Systems Dynamics

Podczas prób toczenia ortogonalnego użyto ostrzy o dwóch różnych geometriach. W przypadku narzędzia z CBN (CB7015) wybrano ostrze o oznaczeniu N123H1 040004 S01025 (rys. 2a), a dla ostrzy z ceramiki azotkowej (GC1690 i CC6090 - rys. 2b i c) – płytki trójkatne o geometrij TNGA 160408 T02520.

W tabl. II przedstawiono dodatkowe informacje o mikrogeometrii krawędzi skrawającej ostrzy. W trakcie badań toczenia ortogonalnego zastosowano dwie oprawki nożowe:

LF 123H25–2020BM do narzędzia z CBN,

 PTFNL 2020K16 w przypadku płytek ceramicznych (TNGA). Badania doświadczalne toczenia ortogonalnego przeprowadzono w dwóch etapach. Najpierw zmiennym parametrem technologicznym była prędkość skrawania $v_c = 100 \div 400$ m/min, a w drugim etapie zmiennym parametrem był posuw f = 0,04÷0,24 mm/obr. Głębokość skrawania w obydwu przypadkach wynosiła $a_p = 3,3$ mm. W tabl. III zestawiono wartości parametrów skrawania.

Oprawka Adapter Silomier Ostrze amera II Uchwyt Tarcza Obiektyw ochronn

Rys. 3. Stanowisko do prowadzenia prób skrawania [8]

w funkcji tempe-

TABLICA III. Parametry obróbki

Etap I	Etap II			
v _c = 100, 160, 240, 280, 320, 400 m/min	<i>v_c</i> = 240 m/min <i>f</i> = 0,04; 0,08; 0,12; 0,16; 0,2; 0,24			
<i>f</i> = 0,12 mm/obr	mm/obr			
<i>a</i> ₀ = 3,3 mm	<i>a</i> ₀ = 3,3 mm			

mowizyjna ThermaCAM[™] Phoenix firmy FLIR System. Według producenta [9] kamera ta jest powszechnie stosowana w różnych gałęziach przemysłu oraz w badaniach naukowych. Charakteryzuje się dużą częstotliwością zapisu i daje możliwość rejestracji obrazów o rozdzielczości 320×255 pikseli. Dzięki temu można uzyskać czytelny obraz rozkładu temperatury w strefie skrawania.

Do poprawnego wyznaczenia temperatury kontaktowej wykorzystano zmianę emisyjności żeliwa sferoidalnego w funkcji temperatury wyznaczoną w [10]. Na podstawie analizy tej pracy stwierdzono, że najbardziej istotny zakres zmian emisyjności będzie obejmował temperatury 320÷580 °C (rys. 4).

Do rejestracji obrazu podczas skrawania zastosowano program ThermaCAM™ RDAS. Sama analiza otrzymanego obrazu odbywała się za pomocą narzędzia ThermaCAM™ RTools. W efekcie otrzymano czarno-biały obraz rozkładu temperatury oraz macierz ze stopniami szarości (grey levels).

Techniki pomiarowe

Badania temperatury skrawania przeprowadzono na tokarce sterowanej numerycznie CNC Transmab 450 TD firmy SOMAB. Widok przestrzeni roboczej tokarki CNC z kamera termowizyjną przedstawiono na rys. 3. Kamerę termowizyjną zamontowano na uchwycie w odległości ok. 60 mm od ostrza skrawającego. Zastosowany uchwyt gwarantował bardzo sztywność układu kameradużą –głowica, a dzięki dodatkowej regulacji była możliwość dokładnego ustawienia kamery względem narzędzia.

Do rejestracji rozkładu temperatury w strefie skrawania podczas toczenia ortogonalnego posłużyła kamera ter-

Rvs. 5. Etapy uzyskania kolorowej mapy rozkładu temperatury – termogramu [11]

MECHANIK NR 3/2015

Na rys. 5 przedstawiono kolejne etapy uzyskania kolorowej mapy rozkładu temperatury (termogramu) w strefie skrawania.

Z mapy rozkładu temperatury wydzielono obszar 2×2 piksele (rys. 6) zlokalizowany powyżej krawędzi skrawającej, w pewnej odległości od niej. Dla tego obszaru wyliczono średnią oraz maksymalną temperaturę kontaktową. Dla pojedynczego pomiaru (np. dla $v_c = 400 \text{ m/min}, f = 0,12 \text{ mm/}$ /obr, $a_p = 3,3$ mm) wygenerowano pięć map rozkładu temperatury. Na ich podstawie wyznaczono wartości średniej i maksymalnej temperatury kontaktowej w strefie skrawania. Do badań rozkładu temperatury przygo-

Rys. 8. Wpływ prędkości skrawania (a) i posuwu (b) na maksymalną temperaturę kontaktową [11]

towano specjalne tarcze (rys. 3), których chropowatość powierzchni wynosiła *Ra* = 0,64 µm i była taka sama jak chropowatość próbki użytej podczas kalibracji kamery termowizyjnej.

Należy doprecyzować pojęcie "średniej temperatury kontaktowej", pod którym wprowadza się umowne pojęcie "temperatury skrawania" – wynika to z trudności technicznych w identyfikacji złożonych pól temperaturowych w strefie skrawania [1].

Rys. 6. Obszar pomiaru temperatury uzyskany z kamery termowizyjnej [11] dla: v_c = 400 m/min, f = 0,12 mm/obr, a_p = 3,3 mm

Wyniki badań i dyskusja

■ Wpływ parametrów obróbki na średnią temperaturę kontaktową. Na rys. 7*a* i *b* przedstawiono zmiany średniej wartości temperatury kontaktowej w funkcji prędkości skrawania i posuwu. W przeprowadzonych testach toczenia ortogonalnego średnia temperatura kontaktowa zmieniała się

Rys. 7. Wpływ prędkości skrawania (a) i posuwu (b) na średnią temperaturę kontaktową [11]

w zakresie od ok. 410 °C do ok. 510 °C, w zależności od przyjętych parametrów procesu.

Stwierdzono, że wraz ze wzrostem prędkości skrawania v_c od 100 do 400 m/min (rys. 7a) przyrost średniej temperatury kontaktowy jest rzędu ok. 50 °C. Zbliżone wartości średniej temperatury kontaktowej dla ostrzy z ceramiki azotkowej mogą być kojarzone z podobnymi właściwościami termicznymi użytych materiałów narzędziowych.

Interesujący wynik uzyskano dla ostrza z CBN (rys. 7*b*), gdyż w zakresie posuwu $f = 0.04 \div 0.08$ mm/obr zarejestrowano znacznie większe wartości średniej temperatury kontaktowej w porównaniu z ostrzami z ceramiki azotkowej [11]. Może to wynikać z faktu, że w przypadku bardzo małej grubości warstwy skrawanej materiał trudniej się oddziela, ponieważ opór właściwy skrawania jest znacząco większy z uwagi na ugniatające działanie krawędzi skrawającej (ostrza z CBN) o dużym promieniu zaokrąglenia (tabl. II). Skutkiem tego otrzymuje się większe wartości średniej i maksymalnej temperatury kontaktowej.

■ Wpływ parametrów obróbki na maksymalną temperaturę kontaktową. Na rys. 8a i b przedstawiono zmiany maksymalnej wartości temperatury kontaktowej w zależności od prędkości skrawania i posuwu. Maksymalna temperatura kontaktowa zmieniała się w zakresie od ok. 420 °C do ok. 540 °C w zależności od parametrów skrawania. Zaobserwowano, że największą różnicę (ok. 40 °C) pomiędzy średnią a maksymalną temperaturą kontaktową uzyskano dla ostrza z CBN, gdy skrawano z prędkością v_c = 400 m/min. Małe różnice między średnią a maksymalną temperaturą kontaktową w skrawaniu żeliwa są następstwem zmniejszenia długości/pola styku i koncentracji ciepła w niewielkim obszarze w porównaniu ze skrawaniem stali [10]. W przeprowadzonych badaniach doświadczalnych wyznaczono również większą wartość mak-

> symalnej temperatury kontaktowej dla ostrza z CBN w porównaniu z ostrzami z ceramiki azotkowej. Na ten fakt może mieć wpływ zużycie ostrza z CBN (choć było ono nieznaczne), ponieważ wykonano nim kilka krótkich prób.

> Rozkład temperatury w strefie skrawania. Na rys. 9 przedstawiono przykładowy termogram uzyskany podczas skrawania żeliwa sferoidalnego narzędziem z powlekanej ceramiki azotkowej. Na obrazie naniesiono zarys ostrza skrawającego, a także zaznaczono średnią i maksymalną temperaturę kontaktową. Zamieszczono również czarno-biały obraz otrzymany bezpośrednio z kamery termowizyjnej bez obróbki cyfrowej.

199

Rys. 9. Mapa rozkładu temperatury w strefie skrawania z użyciem ostrza z powlekanej ceramiki azotkowej ($v_c = 400 \text{ m/min}, f = 0,12 \text{ mm/obr}, a_c = 3,3 \text{ mm}$) [11]

Wnioski

Na podstawie przeprowadzonych badań wysunięto następujące wnioski:

 Dla zastosowanych parametrów skrawania średnia temperatura kontaktowa zmieniała się w zakresie od ok. 410 °C do ok. 510 °C. Otrzymane wartości średniej temperatury kontaktowej są zdecydowanie niższe od średniej temperatury skrawania stali niestopowej, np. C45.

 Odmienny charakter zmian średniej temperatury kontaktowej w funkcji posuwu (f = 0,04÷0,08 mm/obr) dla ostrza z CBN wynika z faktu, że przy bardzo małej grubości warstwy skrawanej materiał trudniej się oddziela z uwagi na ugniatające działanie krawędzi skrawającej o dużym promieniu zaokrąglenia.

 Otrzymanie wyższych wartości maksymalnej temperatury kontaktowej dla ostrzy z CBN w porównaniu z ostrzami z ceramiki azotkowej może być spowodowane niewielkim zużyciem ostrza.

LITERATURA

- Grzesik W. "Podstawy skrawania materiałów metalowych". Warszawa: WNT. 2010.
- Lis K. "Możliwości stosowania metod pirometrycznych do identyfikacji pola temperatury w strefie skrawania podczas wiercenia". *Prace Naukowe Katedry Budowy Maszyn*. Nr 4 (2005): s. 91÷116.
- Dinca C., Lazoglu I., Serpenguzel A. "Analysis of thermal fields in orthogonal machining with infrared imaging". *Journal* of *Materials Processing Technology*. No. 198 (2008): pp. 147÷154.
- Niesłony P. "Modelowanie przepływu ciepła i rozkładu temperatury w strefie skrawania dla ostrzy z twardymi powłokami ochronnymi". Opole: Oficyna Wydawnicza Politechniki Opolskiej, 2008.
- Małecka J., Grzesik W., Kowalczyk D., Kiszka P. "Analiza obrazowa stanu zużycia ostrza z ceramiki azotkowej po skrawaniu żeliwa sferoidalnego". *Tribologia*. Nr 22 (2011): s. 71÷84.
- Żak K., Kiszka P., Grzesik W., Kowalczyk D. "Skrawanie żeliwa sferoidalnego narzędziami z ceramiki azotkowej i CBN". *Mechanik*. Nr 8–9 (2013): s. 634÷642.
- 7. "Poradnik obróbki skrawaniem", Sandvik Coromant, 2010.
- Kiszka P., Kowalczyk D., Grzesik W. "Wysokowydajne skrawanie żeliwa sferoidalnego z użyciem narzędzi CBN". *Innowacyjne Technologie Wytwarzania*. Kraków, 2011, s. 15÷24.
- 9. http://www.flir.com.pl
- Grzesik W., Rech J., Żak., K., Claudin C. "Machining performance of pearlitic-ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools". *International Journal of Machine Tools & Manufacture.* No 49 (2009): pp. 125+133.
- Kiszka P. "Badanie mechanicznych i termicznych odziaływań w skrawaniu żeliwa sferoidalnego ostrzami z ceramiki azotkowej i CBN". Rozprawa doktorska. Opole, 2014.