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Mathematical modeling of cavitation-free  

electrochemical machining process 

Modelowanie matematyczne procesu elektrochemicznej obróbki materiału 

z uwzględnieniem zjawiska kawitacji 
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Electrochemical machining of machine elements is model-

ing in two-dimensional formulation, Influence of shaped 

section of the cathode on cavitation phenomenon was taken 

into account. The aim of investigations was to determine 

machining conditions provided cavitation-free electrolyte 

flow in the space of large pressure gradients. 

KEYWORDS: electrochemistry, treatment of material, 

potential, electrolyte cavitation, cathode. 

W dwuwymiarowym polu modelowano matematycznie proces 

elektrochemicznej obróbki części maszyn uwzględniając 

wpływ profilowanej części roboczej katody na zjawisko 

kawitacji. Celem badań było określenie warunków obróbki 

zapewniających bezkawitacyjny przepływ elektrolitu w prze-

strzeni dużych gradientów ciśnień. 

SŁOWA KLUCZOWE: elektrochemia, obróbka materiału, 

potencjał, kawitacja elektrolitu, katoda. 

Introduction 

In this paper a mathematical model of the electrochemi-

cal machining the flywheel car is built. When we treat a part 

in stationary mode, at the corner points (point B  in  

Figure 1) the flow velocity increases sharply and as a con-

sequence there are arising cavities, fulfilled by air bubbles. 

In these areas electrical conductivity of electrolyte is broken 

and they play the role of insulator. This leads to the forma-

tion of irregularities on the surface to be treated.  

 

 

Fig. 1. Interelectrode gap before modification 

To eliminate this phenomenon one proposed to replace 

the corner points on the cathode by a shaped sections, 

which ensure smooth flow (BC  in Figure 2). It was used 

methods of the theory of jet streams [1] what enable to build 

analytical solution of the problem.  

Problem formulation 

Figure 2 show the plane sections (right half) of the elec-

trode gap (IEG). We use complex coordinate iyxz += . 

Here AG  is the line of symmetry, ABCDE is the boundary 

of the cathode, GF is the anode boundary, EF  is the elec-

trically insulated section of the IEG, A , E  are points at 
infinity. The origin is chosen at the point G. The feed rate of 
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the cathode 
K
V

ρ

 is orthogonal to axis x, directed along the 

edge CD. The electrolyte flow in the IEG direct from the 

point A  to point E . The IEG width in neighborhood of 

points A  and E  are HA and HE electrolyte flow speed are 
VA and VE. The electrolyte flow speed on the profiled edge is 
constant and equal V0.  

.  

Condition of stationarity of electrochemical shaping is 
true on the border of the anode. Our goal is to determine the 
shape of anode surface and cathode profiled section. 

Mathematical modeling 

We assume that the rate of metal removal 
m
V  from the 

anode surface per unit mass, determined by Faraday's law 

ηε
Am
jV = , where )(

A
jηη =  is the current efficiency, 

A
j  is 

the current density, ε  is the metal electrochemical equiva-

lent, cathode surface moves with constant velocity and lin-
ear velocity of points on the surface of the anode is 

θcos⋅=
KA
VV ,    (1) 

where θ  is the angle between the feed rate direction and 

the unit outward normal to the anode surface. In this case, 
the general scheme of the process does not change with 
time, and the process can be regarded as stationary. Steady 

current density distribution on the stationary anode 
A
j  is 

defined as: 

θ
ε

ρ
η cos

K

A

V
j = , 

where ρ  is density of the anode material. We assume that 

at the boundary of the anode, the next relation is true [2, 3] 

)cos(
00

θ
ε

ρ
ba

V
j K

A
+=   (2) 

Consider a two-dimensional model of the process (Figure 

2). We introduce a Cartesian coordinate system 
1

x , 
1

y , 

associated with anode. 

We assume neglecting the near-electrode phenomena in 

the IEG there is electric field potential 
1

ψ , satisfying the 

Laplace equation 

0
1
=∆ψ  (3) 

and on the electrode borders conditions of constant poten-

tial 
AA

u=
1

ψ , 
KK

u=
1

ψ are true. By (3), there exists a func-

tion 
1

ϕ , harmonically conjugate to 
1

ψ , and we can enter the 

complex potential of the electrostatic field 

),(),(),(
11111111

yxiyxyxW ψϕ += , which is an analytic func-

tion in area 
111

iyxz += . 

We introduce the characteristic values of the current 

density ερ
K

Vj =
0

, length 
0

)( juuH
KA

−= κ  (κ - electrical 

conductivity of the medium) and move on to the dimen-
sionless variables 

H

x
x

1
= ,  

H

y
y 1
= ,  iyxz += ,  

KA

K

uu

iuW
iW

−

−
=+=

1ψϕ . 

Then, in view of (2) function ψ satisfies in IEG to Laplace 

equation and the boundary conditions on electrode sur-
faces. 

1=
A

ψ ,  0=
K

ψ ,  θ
ψ

cos
00

0

ba
j

j

n

AA
+==

∂

∂
, 

where, 
0

a , 
0

b  are constants, taking into account the de-

pendence current output of the current density. 

The variation area of the electrostatic complex potential 

W  is a rectangle { }
0

0,10, ϕϕψψϕ ≤≤≤≤+= iD
W

 (Fig-

ure. 3). 

 

Let in the plane of the auxiliary complex variable 

τξ iu +=  region { }40,20, πτηπξηξ ≤≤≤≤+== iuD
u

 

corresponds to the area flow 
z

D  (Figure 4), and the function 

z(u)  conformally maps the domain 
u

D  to the domain 
z

D  

with the points correspondence, indicated in Figure 2, 4. 

 

We define two functions: complex potential of the electro-

lyte flow [4] )()()( uiuuW
ggg

ψϕ +=  and the function of 

Zhukovsky [1] 

         

Fig. 4. Domain 
u

D  

 

Fig. 3. Domain 
W

D  

 

Fig. 2. Elements of new IEG area 
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 ( ) )()(ln 0
uiur

dW

dzV
=u

g

θχ +=













    (4) 

where ( )VVur
0

ln)( = , V  is velocity of the electrolyte flow, 

θ  is the angle of the velocity vector of the axis x . 

Complex potential of electrolyte flow )(uW
g

 satisfies the 

boundary conditions 

4
,

2
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The variation area of the function )(uW
g

 is the strip 

{ }qiD gggW
g

≤≤+= ψψϕ 0, , 
EE

HVq =  is the electrolyte flow 

output. 

The boundary conditions for the complex potential )(uW
g

 

let us to construct  function duuW
g

)(  by the singular points 

method [1]: 

)()()()(

)2(

)()()()(

)2()(

3322

4

4411
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iauiauiauiau

u
N
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×
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ϑ
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ϑ

 

where )(u
i

ϑ  ( 4,1=i ) is theta functions for periods π  and 

πτ  [5]. Constant N  is determined from the condition that 

the flow output is q . Determining the residue of the function 

)(uW
g

 at the point A , we obtain 

)()()()()0()0(
332241

ieiaieiaieiaieia
q

N +−+−′= ϑϑϑϑϑϑ
π

. 

Zhukovsky function )()()( uiuru θχ +=  satisfy the follow-

ing boundary conditions 

.
4
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On anode border GF  there is condition 
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which allows to take into account the regime of the electro-
lyte flow and variability of the current output. 

 

To determine the function 
g

dd ϕϕ  area 
u

D  is displayed 

on the upper half-plane 
ω

D  with the points correspondents, 

indicated in Figure 5, with help of transform 
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And, using the Schwarz-Christoffel formula [6], we find 

the derivatives of functions mapping the area 
ω

D  to varia-

tion areas of functions W , 
g
W : 
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ω
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=

M
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where )(iaωα = , )2( ie+= πωσ . 

Using these formulas, we find 

1)(

))()()((

)()(

)(

2
−

−−

−

=

ξω

σξωαξω

ασ

π

ξϕ

ξϕ

q

M

d

d

g
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Zhukovsky function )(uχ  we find as in the form 

( ) )()(
0

ufuu += χχ , where the function )()()(
000
uiuru θχ +=  

satisfies the boundary conditions: 

4
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and has in 
u

D  the same singularities as that for )(uχ . Func-

tion )(uf is an analytical at 
u

D  and continuous in 
u

D . By the 

method of singular points we have [1]: 
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Comparing the boundary conditions for the functions ( )uχ  

and )(
0
uχ , we obtain the boundary conditions for the un-

known function )()()( uiuuf µλ += : 

 

Fig. 5. Domain 
ω

D  
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To construct the unknown function )(uf  area
u

D  is dis-

played on the semicircle with help of the function [7] 
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Taking into account the boundary conditions (6) and (7), 

the function )(uf  can be analytically continued to hole ring 

and to write in the form of a Laurent series: 

∑
∞

−∞=

=

n

n

n
ucuf )( , 

where 
n

c  are real coefficients. 

On the basis of the boundary conditions (6) we find: 

0
0
=c , 
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= , and obtain  
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Condition (7), taking into account the representation of a 

function )(uf  by the series, has the form: 
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Multiplying equation (8) for )2cos( ξn  and integrating by 

ξ  within 2,0 π , we obtain the infinite system of equations 

for the coefficients 
n

c : 
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Dimensionless coordinates of the anode boundary and 
cathode profiled section is determined from (4) by the for-
mula 

due
du

dW

V
uz

u

ug

∫=

0

)(

0

1
)( χ . 

To solve the problem it is necessary to determine the 

mathematical parameters τ , a , d  e . It can be done by 

setting the speed ratios 
0
VV

A
, 

AE
VV , and anode dimen-

sions. 

Results of analysis 

Figure 5 and Figure 6 show some of the calculation re-
sults. As It can be seen from the figures, the anode surface 
in the area, close to the profiled section on cathode, varies 
monotonically. 

 

 

Closure 

The results of calculations: 
0

a , 
0

b  are constants, re-

flected the dependence of the current efficiency on the cur-

rent density; ))2(Re( πzL = , ))2(Im( πzh −=  are “length” 

and “height” of the anode; 
A

VV
0

is ratio of the velocities, 
0

V  

is the velocity of the electrolyte flow on the profiled section, 

A
V  is the flow velocity at the point A ; 

EAAE
HHVV =  is 

the ratio of velocities at points A  and E . 
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