

Elektroerozyjne drążenie otworów o małych średnicach w materiałach o dużej przewodności cieplnej

Electrical Discharge Machining small diameter holes in materials with high thermal conductivity

Łukasz Sosinowski*

DOI: 10.17814/mechanik.2015.12.529

W artykule przedstawiono wyniki badań wpływu czasu impulsu t_{on} , czasu przerwy t_p oraz zmiany ciśnienia dielektryka p, przy ustalonych pozostałych parametrach obróbki EDM, na wybrane parametry struktury geometrycznej obrabianej powierzchni, zużycie elektrody roboczej Z_e oraz czasu drążenia t_d .

SŁOWA KLUCZOWE: drążenie elektroerozyjne, przewodność cieplna, struktura geometryczna powierzchni, szczelina międzyelektrodowa, współczynnik wypełnienia impulsu.

The paper presents the results of the influence of the pulse time t_{onv} the interval time t_p and pressure change of the dielectric p, at the fixed others parameters of Electrical Discharge Machining on selected parameters of the geometric structure of the treated surface, electrode wear Z_e and drilling time t_d .

KEYWORDS: Electrical Discharge Machining, thermal conductivity, geometric structure of surface, the interelectrode gap, duty cycle.

Wprowadzenie

W obróbce elektroerozyjnej (EDM) naddatek jest usuwany z przedmiotu obrabianego w wyniku zjawisk towarzyszącym wyładowaniom elektrycznym (wydzielanie ciepła, wzrost temperatury, parowanie, topienie i rozrywanie materiału) w obszarze pomiędzy przedmiotem obrabianym a elektrodą roboczą. Szczelina między elektrodowa wypełniona jest cieczą dielektryczną, której zadaniem jest m.in. usunięcie produktów erozji z przestrzeni międzyelektrodowej. Twardość materiału obrabianego nie wpływa na przebieg procesu, a siły występujące między narzędziem a materiałem są znikome. W związku z tym, obróbka elektroerozyjna jest racjonalną alternatywą przy kształtowaniu elementów wykonanych z materiałów trudno obrabialnych klasycznymi metodami tj.: utwardzona stal, węgliki, stopy o wysokiej wytrzymałości, super twarde materiały przewodzące prąd elektryczny (np. materiały kompozytowe na osnowie metalicznej, ceramika). Obróbka ta umożliwia także drążenie smukłych otworów, gdzie stosunek średnicy do głębokości jest znacznie mniejszy niż 1/10 [1]. Podczas wiercenia elektroerozyjnego elektroda robocza pełni funkcję wiertła, wykonując ruch posuwowy oraz obrotowy. Do mikrowiercenia metodą elektroerozyjną stosowane są elektrody rurkowe (dielektryk jest dostarczany poprzez wcześniej wywiercony otwór) [2].

Podczas wiercenia elektroerozyjnego elektrodą w kształcie rurki, zużycie występuje na długości (tzn. następuje skrócenie elektrody) oraz ścianach bocznych [3]. W wyniku takiego zużycia elektrody roboczej, wywiercony otwór ma kształt rożka. Wysokie zużycie elektrody ma wpływ także na stabilność, dokładność oraz wydajność procesu. Możliwość wiercenia głębokich otworów jest ograniczona jedynie przez gromadzenie na dnie otworu kawałków obrobionego materiału, co powoduje nieprawidłowe wyładowania, szczególnie gdy otwór jest wiercony głęboko. Również powstające podczas procesu pęcherzyki gazowe, blokujące wpłynięcie dielektryka do obszaru obróbki, mogą ograniczać smukłość otworu [4]. Jednak w przypadku wiercenia głębokich mikrootworów w metalu, mikrowiercenie elektroerozyjne stanowi jedną z najbardziej efektywnych metod. W przypadku mikroobróbki elektroerozyjnej możliwe jest uzyskanie mikrokształtów z wysoką dokładnością (mniejszą niż 5 µm) i dobra jakością powierzchni (z chropowatością Ra mniejszą niż 0,1 µm). Wykonane otwory, przy zastosowaniu mikrowiercenia elektroerozyjnego, mają regularny kształt oraz wysoką dokładność powierzchni bez zadziorów. Jednak parametry obróbki zapewniające powyższe wskaźniki tech-

^{*} mgr inż. Łukasz Sosinowski, Wydział Inżynierii Produkcji Politechniki Warszawskiej (lukasz.sosinowski@wp.pl).

nologiczne, przyczyniają się do niskiej wydajności procesu i znacznego zużycia narzędzia [5].

Przewodnictwo ciepła polega na transporcie energii bez obserwowanego ruchu makroskopowego ciał biorących udział w przenoszeniu energii, transport energii zachodzi dzięki mikroskopowym zderzeniom cząstek. Mechanizm przewodzenia ciepła w ciałach stałych zależy od rodzaju ciała. W przypadku ciał nieprzeźroczystych przewodzenie jest wyłącznym sposobem transportu ciepła. Przewodność cieplna jest zdolnością do wyrównywania energii wewnętrznej. Największe współczynniki przewodzenia ciepła mają metale. Ich przewodność cieplna maleje wraz ze wzrostem temperatury. Metale, które są najlepszymi przewodnikami ciepła, są równocześnie najlepszymi przewodnikami elektryczności [6].

Struktura geometryczna powierzchni jest jednym z ważniejszych czynników decydujących o jakości. Wpływa na własności eksploatacyjne elementów maszyn wyrażone m.in. przez warunki tarcia na powierzchniach stykowych, naprężenia stykowe, wytrzymałość zmęczeniową, odporność na korozję, szczelność połączeń, powierzchniowe promieniowanie cieplne czy własności magnetyczne. Strukturą geometryczną powierzchni (SGP) określa się zbiór wszystkich nierówności, powstałych w wyniku procesów obróbki i zużycia materiału. Przyjmuje się podziała (SGP) na składowe: chropowatość powierzchni, falistość powierzchni i odchyłki kształtu. Podział ten oparty jest na proporcjach wysokości i długości fali nierówności. Pierwsza składowa jest uznawana za jeden z najistotniejszych wyróżników stanu warstwy wierzchniej (WW). Czynnik ten wpływa na przebieg podstawowych zjawisk tribologicznych elementów współpracujących węzła kinematycznego [7].

Metodyka badań doświadczalnych

Do badań wybrano materiał o dużej przewodności cieplnej (185W/mK) jakim jest stop aluminium PA4. Próby wiercenia elektroerozyjnego wybranego materiału zostały przeprowadzone w Zakładzie Obróbek Wykańczających i Erozyjnych Politechniki Warszawskiej. Wiercenie wykonano na drążarce elektroerozyjnej Charmilles Drill 20. Przeprowadzono je z użyciem miedzianej elektrody rurkowej przelotowej o średnicy zewnętrznej równej 1,5 mm. Jako dielektryk zastosowano wodę dejonizowaną, która była dostarczana do obszaru obróbki przez kanał w elektrodzie roboczej (Rys. 1a, 1b).

Rys. 1.a) Schemat przedstawiający drążenie elektroerozyjne z dostarczaniem dielektryka poprzez kanał w elektrodzie roboczej, b) przekrój elektrody roboczej.

W badaniach uwzględniono trzy czynniki wejściowe, których wartości były zmienne w danych przedziałach:

- t_{on} czas impulsu (19 99 μm),
- t_p czas przerwy (19 99 μm),
- p ciśnienie dielektryka (1 8 bar).

Przyjęcie różnych parametrów obróbki umożliwiło przedstawienie wybranych parametrów na dokładność i jakość wykonanych otworów, a także na zużycie elektrody roboczej.

Przyjęto następujące czynniki wyjściowe:

- liniowe zużycie elektrody roboczej (Z_e),
- czas drążenia (t_d),
- średnica wydrążonych otworów (d),
- chropowatość powierzchni wydrążonych otworów (R_a, R_z),
- grubość szczeliny bocznej (S_b),
- średnia prędkość drążenia (V).

W celu obliczenia czynników wyjściowych zmierzono: długość elektrody roboczej przed obróbka (h_p) oraz długość elektrody roboczej po obróbce (h_k). Liniowe zużycie elektrody roboczej (Z_e) obliczono według poniższego wzoru:

$$Z_{n} = h_{n} - h_{n} \tag{1}$$

w której: h_p – długość elektrody roboczej przed obróbka; h_k – długość elektrody roboczej po obróbce.

Grubość szczeliny bocznej $(S_{\mbox{\scriptsize b}})$ obliczono zgodnie ze wzorem:

$$S_b = \frac{d-d_c}{2}$$
(2)

gdzie: d – średnica wydrążonych otworów; d_e – średnica zewnętrzna elektrody roboczej.

Średnią prędkość drążenie V obliczono następująco:

v

$$r = \frac{h_m}{t_s}$$
(3)

w której: h_m – wysokość materiału obrabianego, t_d – czas drążenia.

Natomiast przyjętymi czynnikami stałymi, były:

- materiał obrabiany (stop aluminium PA4),
- wysokość materiału obrabianego h_m=40 mm,
- miedziana elektroda rurkowa przelotowa, o średnicy zewnętrznej d_e=1,5 mm,
- dielektryk (woda dejonizowana),
- amplitudę natężenia prądu I (12-14A),
- napięcie wyładowania U (40-45V).

W poniższej tabeli przedstawiono parametry obróbki z jakimi były realizowane badania.

Tab. T. Falameli y UDIUDKI Tealizuwane w Dauami

Parametry wejściowe			
•	czas impulsu ton w przedziale	19 ~ 99 µs	
•	czas przerwy między impulsami t _p	19 ~ 99 µs	
•	ciśnienie dielektryka p	1 ~ 8 bar	
Parametry wejściowe ustalone			
•	napięcie wyładowania U	40 ~ 45 V	
•	amplituda natężenia prądu I	12 ~ 14 A	
Parametry wyjściowe			
•	zużycie elektrody Z _e		
•	czas drążenia t _d		
	średnica wydrążonych otworów d		

- chropowatość powierzchni R_a, R_z
 grubość szczeliny bocznej S_b
- średnia prędkość drążenia V

Pomiary chropowatości oraz średnicy wydrążonych otworów wykonano na profilometrze Talysurf 10.

Analiza wyników

Analizując wyniki badań wpływu czasu impulsu t_{on} na chropowatość powierzchni, średnicę drążonego otworu d, czas drążenia t_d oraz zużycie elektrody roboczej Z_e , można stwierdzić, że najkorzystniejsze wyniki osiąga się przy czasie równym 39 µs. Widać także, że czas impulsu t_{on} jest bardzo istotnym parametrem obróbki elektroerozyjnej, ponieważ jego zmiana ma duży wpływ na wcześniej wymienione parametry.

Obserwując wykres parametru chropowatości R_a od czasu trwania impulsu t_{on} (Rys.2.), można zaobserwować, że najkorzystniejszą powierzchnię uzyskujemy przy czasach impulsów równych 39 µs i 69 µs. Widać także, że przy tych wartościach czasu impulsu, chropowatość powierzchni w najmniejszym stopniu zmienia się wraz ze wzrostem głębokości drążenia. Istotny jest również fakt, że chropowatość powierzchni wzrasta wraz ze wzrostem głębokości drążenia.

Rys. 2. Zależność parametru chropowatości R_{a} od czasu trwania impulsu $\mathsf{t}_{\mathsf{on}}.$

Analizując wykres średnicy drążonego otworu d od czasu impulsu t_{on} (Rys.3.) można zauważyć, że najkorzystniejsze wyniki, zostały uzyskane przy czasach impulsów 39 µs i 69 µs. Dla czasu równego 39 µs uzyskano mniejsze rozbicie otworu, a także mniejszą zmianę średnicy wraz ze wzrostem głębokości drążenia. Na podstawie tego wykresu można stwierdzić, że wraz ze wzrostem głębokości drążenia, średnica drążonego otworu także wzrasta.

Rys. 3. Zależność średnicy drążonego otworu d od czasu trwania impulsu $t_{\text{on}}. \label{eq:constraint}$

Na wykresie zużycia elektrody Z_e od czasu trwania impulsu t_{on} (Rys.4.), po raz kolejny można zauważyć, że najkorzystniejsze czasy trwania impulsów to 39 µs i 69 µs. Gdy czas trwania impulsu t_{on} jest równy czasowi trwania przerwy t_p , zużycie elektrody Z_e gwałtownie rośnie. Po przekroczeniu czasu trwania impulsu t_{on} równego 69 µs, zużycie elektrody roboczej Z_e również wzrasta.

Wykres czasu drążenia t_d od czasu trwania impulsu t_{on} (Rys.5.) pokazuje, że najkorzystniejszy czas drążenia t_d występuje przy czasie trwania impulsu t_{on} równym 39 µs. Gdy czas trwania impulsu przekroczy 49 µs, zgodnie z przewidywaniami czas drążenia t_d maleje.

Rys. 5. Zależność czasu drążenia t_d od czasu trwania impulsu ton.

Na podstawie analizy zależności czasu trwania przerwy t_p od parametru chropowatości R_a, średnicy drążonego otworu d, zużycie elektrody Z_e oraz czasu drążenia t_d zauważono, że nie wpływa on tak znacząco jak czas trwania impulsu t_{on} na chropowatość powierzchni i średnicę drążonych otworów d. Jednak wraz z jego wzrostem czas drążenia t_d jak i zużycie elektrody roboczej Z_e wzrasta. Jeżeli nie zależy nam na równomiernym rozbiciu drążonego otworu, czas trwania przerwy t_p powinien być jak najmniejszy.

Analizując wykres parametru chropowatości R_a od czasu trwania przerwy t_p (Rys.6.) nie można zauważyć znaczącego wpływu czasu trwania przerwy t_p na chropowatość powierzchni, widać jednak, że rośnie ona wraz ze wzrostem głębokości drążenia. Przy czasach trwania przerwy równych 69 µs i 79 µs, występuje najmniejsza zmiana chropowatości wraz ze wzrostem głębokości drążenia.

Zależność średnicy drążonego otworu d od czasu trwania przerwy t_p została przedstawiona na Rys.7. Czas trwania przerwy nie ma znaczącego wpływu na średnice drążonego otworu d. Wraz ze wzrostem głębokości drążenia średnica drążonego otworu d, także wzrasta.

Rys. 6. Zależność parametru chropowatości R_{a} od czasu trwania przerwy $t_{\mathsf{p}}.$

Rys. 7. Zależność średnicy drążonego otworu d od czasu trwania przerwy t_p .

Obserwując wykres zużycia elektrody Z_e od czasu trwania przerwy t_p (Rys.8.), można stwierdzić, że wraz ze wzrostem czasu trwania przerwy, zużycie elektrody wzrasta. Z ekonomicznego punktu widzenia czas trwania przerwy powinien być jak najkrótszy.

Na podstawie zależności czasu drążenia t_d od czasu trwania przerwy t_p (Rys.9.) widać, ze wraz ze wzrostem czasu trwania przerwy, czas drążenia zwiększa się. Przy czasie trwania przerwy t_p równym 19 µs, czas drążenia t_d znacząco wzrasta.

Na podstawie zależności ciśnienia dielektryka p od parametru chropowatości R_a , średnicy drążonych otworów d, zużycia elektrody roboczej Z_e i czasu drążenia t_d można stwierdzić, że wraz ze wzrostem ciśnienia dielektryka średnica drążonych otworów d, czas drążenia t_d i zużycie elektrody Z_e zmniejszają się. Ciśnie dielektryka nie ma znaczącego wpływu na chropowatość powierzchni.

Rys. 9. Zależność czasu drążenia t_d od czasu trwania przerwy t_p.

Zależność parametru chropowatości R_a od ciśnienia dielektryka p (Rys.10.) pokazuje, że ciśnienie dielektryka nie wpływa na chropowatość powierzchni, a sama chropowatość zależy od głębokości drążonego otworu.

Rys. 10. Zaleznosc parametru chropowatosci R_a od cisnienia dielektryka p.

Na wykresie średnicy drążonego otworu d od ciśnienia dielektryka p (Rys.11.), można zauważyć, że wraz ze wzrostem ciśnienia p, średnica drążonych otworów d maleje. Wynika to z faktu, że przy wzroście ciśnienia p produkty obróbki są skuteczniej wypłukiwane, w związku z tym nie powstają wyładowania na ściance bocznej elektrody.

Rys. 11. Zależność średnicy drążonego otworu d od ciśnienia dielektryka p.

MECHANIK NR 12/2015

Analizując zależność zużycia elektrody Z_e od ciśnienia dielektryka p (Rys.12.), można stwierdzić, że najkorzystniejsze zużycie występuje przy ciśnieniu równym 4 bar. Gdy ciśnienie wzrasta powyżej 6 bar, zużycie elektrody roboczej Z_e maleje.

Z zależności czasu drążenia t_d od ciśnienia dielektryka p (Rys.13.), wynika, że wraz ze wzrostem ciśnienia dielektryka p, czas drążenia t_d spada. Jest to spowodowane, tak jak w przypadku średnicy drążonych otworów, lepszym wypłukiwaniem produktów obróbki wraz ze wzrostem ciśnienia.

Analizując zależność grubości szczeliny bocznej S_b od prędkości drążenia V i współczynnika wypełnienia impulsu kw, można zauważyć, że szczelina boczna S_b maleje wraz ze wzrostem współczynnika wypełnienia impulsu kw, natomiast prędkość drążenia V wzrasta.

Rys. 14. Zależność szerokości bocznej S_b od współczynnika wypełnienia impulsu kw i prędkości drążenia V.

Obserwując wykres przedstawiający zależność grubości szczeliny bocznej S_b od ciśnienia dielektryka p i prędkości drążenia V, widać że przy wzroście ciśnienia dielektryka p szczelina boczna S_b maleje, a prędkość drążenia V rośnie.

Rys. 15. Zależność grubości bocznej $S_{\rm b}$ od ciśnienia dielektryka p i prędkości drążenia V.

W wyniku badań próbek pomiarowych zaobserwowano, że gdy czas trwania przerwy t_p jest większy bądź równy czasowi trwania impulsu t_{on} oraz gdy ciśnienie dielektryka p podczas obróbki jest bardzo małe (1-2 bar), przy dużej głębokości drążenia, elektroda ulega uszkodzeniu (Rys.16.). Dzieje się tak, ponieważ przy takich warunkach wypłukiwanie produktów obróbki jest bardzo utrudnione, a te z kolei przyczyniają się do powstania wyładowań na ściankach bocznych elektrody. Elektroda po pewnym czasie drążenia zmniejsza swoją średnice, w miejscach występowania wyładowań na ściance bocznej. Jej dolna część często też zgrzewa się z przedmiotem obrabianym, co przy jej ruchu obrotowym prowadzi do pęknięcia.

Rys. 16. Widok uszkodzonej elektrody (p=1bar, ton=19µs, tp=19 µs).

Podsumowanie

Na podstawie przeprowadzonych badań wpływu czasu trwania impulsu t_{on} , czasu trwania przerwy t_p oraz ciśnienia dielektryka p na chropowatość powierzchni, średnicę drążonych otworów d, czas drążenia t_d , zużycie elektrody Z_e , grubość szczeliny bocznej S_b oraz średnią prędkość wiercenia V można sformułować następujące wnioski:

- wraz ze zwiększaniem głębokości drążonych otworów rośnie chropowatość powierzchni,
- przy tym samym ciśnieniu dielektryka p, wraz ze wzrostem głębokości drążenia zwiększa się średnica drążonych otworów d,
- gdy wzrasta czas trwania impulsu t_{on}, średnica drążonych otworów d także wzrasta,
- chropowatość powierzchni w niewielkim stopniu zależy od czasu trwania przerwy t_p,
- średnica drążonych otworów d zmniejsza się gdy rośnie czas trwania przerwy t_p,

- przy wzroście ciśnienia dielektryka p maleje średnica drążonych otworów d,
- gdy rośnie czas trwania impulsu t_{on} to skraca się czas drążenia t_d,
- kiedy czas trwania przerwy t_p jest większy bądź równy czasowi trwania impulsu t_{on,} zużycie elektrody Z_e gwałtownie wzrasta,
- wraz ze wzrostem czasu trwania przerwy $t_{\rm p}$ wzrasta czas drążenia $t_{\rm d},$
- zużycie elektrody Z_e rośnie gdy zwiększa się czas trwania przerwy t_p,
- wraz ze wzrostem współczynnika wypełnienia impulsu k_w szczelina boczna S_b maleje, natomiast prędkość drążenia V wzrasta,
- gdy ciśnienie dielektryka p rośnie, to szczelina boczna S_b maleje, a prędkość drążenia V wzrasta,

LITERATURA

- Dąbrowski L., Marciniak M., Nowicki B., Obróbka skrawaniem, ścierna i erozyjna, Warszawa, 2007.
- El-Hofy H., Advanced Machining Process. Nontraditional and hybrid machining process, Alexandria University, Egypt, 2005.
- Pham D. T., Ivanov A., Bigot S., Popov K., Dimov S.: An investigation of tube and rod electrode wear in micr EDM drilling, International Journal of Advanced Manufacturing Technology, May 2007, Volume: 3, Issue: 1-2, pp. 103-109.
- Jiazhong L., Guoqiang Y., Cong W., Xuejie G., Zuyuan Y.: Prediction of aspect ratio of micro hole drilled by EDM, Journal of Mechanical Science and Technology 27 (1), 2013, pp. 185-190.
- Jahan M.P., Rahman M., Wongb Y.S.: A review on the conventional and microelectrodischarge machining of tungsten carbide, International Journal of Machine Tools & Manufacture 51, 2011, pp. 837-858.
- 6. Bejan A., Heat Transfer, Wiley, New York, 1993.
- Zawora J., Nowicki B., Metrologia wielkości geometrycznych, Warszawa, 2001.