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Presented is a mathematical description of tooth 
flank surface of the wormwheel in globoid worm 
gear. The kinematic system of tooth formation was 
performed. The mathematical description of tooth 
flank of globoid worm was used.  
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The modeling method of worm and wormwheel of 
globoid worm gear with a rectilinear tooth profile in CAD 
systems was described by authors in [4-6]. Mathematical 
model of the globoid worm is described in [3]. The next 
step is to present a mathematical model of tooth flank of 
wormwheel in globoid worm gear. 
 
Kinematic system of wormwheel machining using a 
globoid worm hob 

 
Globoid worm gear is a spiral bevel gear with an axle 

crossing angle of 90° (Fig. 1) [2]. Fixed motion 
coordinate systems of a tool x1 y1 z1 and wormwheel 
shell x2 y2 z2 were introduced. They also included 
movable systems: x1 y1 z1 for tool and x2 y2 z2 for 
wormwheel. The machining worm - tool - rotates around 
the axis z'1 by an angle φ1 opposite to the trigonometric 
direction. The wormwheel shell rotates around x’2 axis by 
an angle φ2 also in opposition to the trigonometric 
direction. Centers of coordinate systems are described 
sequentially with points O1 and O2 distant by value a. 
The surface of the machining worm Σ1 in the coordinate 
system x'1 y'1 z'1 is described by the location vector, while 
the wormwheel surface Σ2 in the coordinate system x'1 y'1 

z'1 – by 𝑟̅2
(1′). To describe the kinematic system and the 

tooth profile of machining worm and wormwheel, it is 
necessary to show the transformations between the 
systems using a 4 × 4 homogeneous matrices that 
contain a rotation matrix and a displacement vector 
(Equations 1-6): 
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where:  
M11' – homogeneous transformation matrix from system 
1’ to 1, M21 – homogeneous transformation matrix from 
the system of fixed machining worm 1 to fixed system of 
wormwheel 2, M22' – homogeneous transformation matrix 
from system 2’ to 2, M12 – homogeneous transformation 
matrix from the system of fixed wormwheel 2 to fixed 
system of machining worm 1, M1'1 – homogeneous 
transformation matrix from system 1 to 1’, M2'2 – 
homogeneous transformation matrix from system 2 to 2’. 
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Fig. 1. The kinematic modeling of the tooth flank of a wormwheel in 
globoid worm gear; x1 y1 z1 – fixed system of a tool (machining 
worm), x2 y2 z2 – fixed system of a wormwheel shell,  x’1 y’1 z’1 – 
movable system of a tool, x’2 y’2 z’2 – movable system of a 
wormwheel shell, φ1 – tool rotation, φ2 – wormwheel shell rotation, a 
– distance between tool and wormwheel shell axes 
 

Mathematical model of the tool flank surface – 
machining worm 
 

Mathematical models of tooth flank in working and 
machining globoid worm are similar. The difference is 
that in the tool model, the thickness of the tool tooth and 
the width of the wormwheel notch must be the same (no 
circumferential clearance). The parametric description of 
the tool profile in axial section (Fig. 2) and the globoid 
helical equation should be used to define the machining 
worm model. The coordinates of the end points A and B 
or C and D of the profile are determined on the basis of 
geometric parameters for gear units. The way of their 
determination was discussed in [3]. 

 

 

 

Fig. 2. Fragment of the axial profile of the machining worm for 
defining the parametric equation of section AB or CD; ha – 
tooth addendum, hf – tooth dedendum, h1 – tool tooth height, s” 
– tooth thickness, α2 – tool tooth profile angle, d2 – pitch 
diameter of wormwheel, d1 – pitch diameter of machining worm 

 
Parametric equation of the axial profile of the tool in 

the plane y1 z1 is illustrated by the expression [3]: 
 

 

where: y1A, z1A – coordinates of point A – start of the 
profile, y1B, z1B – coordinates of point B – end of the 
profile, u – parameter (u = up:du:uk). 

 

Transition of any point in the plane y1 z1 along the 
globoid helix is determined by a homogeneous 
transformation matrix: 

 

 

 

Parametric equation of a tooth flank in globoid 
machining worm is obtained by moving a tool profile 
along the globoid helical line. The radial vector of the 
side surface of the tool is determined by the expression: 

 

Once developed, we get [2]: 

 

where: φ1 – parameter (and worm rotation angle), φ2 – 
auxiliary parameter (and wormwheel rotation angle). 

 
Parameter φ1 specifies the extent of the tool thread. 

The parameter φ1 changes from the initial value φ1p to 
the final value φ1k with step dφ1. Parameter u changes 
from the initial value up to the final value uk with the step 
du. Values dφ1 and du determine the accuracy of the 
thread surface in the machining globoid worm. In the 
equation (10), the dependence φ2 = φ1 ∙ i, determined on 
the basis of the worm gear ratio, should be used: 

 

where: z1 – number of worm teeth, z2 – number of 
wormwheel teeth. 
 

Mathematical model of wormwheel tooth flank 
 

The surface of the wormwheel tooth flank is the result, 
among others, of linear contact of the machining worm 
and processed wormwheel. The fundamental mesh 
condition is fulfilled: 

 

where: nx, ny, nz – components of the vector normal to the 
surface, vx, vy, vz – components of the vector tangent to 
the surface. 

 
The inter-tooth contact between the machining worm 

and the wormwheel can be determined based on the 
kinematic system shown in Fig. 1. The dependence of 
the wormwheel shell rotation φ2 on the machining worm 
rotation φ1 is shown by a homogeneous matrix of 
transformation: 

 

 
Substituting equations (1), (2) and (6) to equation (13) 

gives: 
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The normal vector in equation (12) can be calculated 
from the equation of tooth side surface of the globoid 
machining worm. The normal vector is defined by the 
expression: 

 

where: L – transformation matrix from system 1’ to 2’ – 
can be obtained by removing the last row and last 
column of the homogeneous matrix of the equation (14): 

 

In the equation (15), the partial derivative 𝜕𝑟̅1

(1′)

𝜕𝜑1

 is 

calculated from the equation (10), giving φ2 = φ1 ∙ i. The 

expression 𝜕𝑟1̅

(1′)

𝜕𝑢
 is to be calculated by inserting the 

parametric equation (7) of the tooth profile y1(u) and z1(u) 

in the equation (10). Expressions 𝜕𝑟1̅

(1′)

𝜕𝜑1

, 𝜕𝑟1̅

(1′)

𝜕𝑢
 are very 

complex, therefore they are not expanded here, just like 

the normal vector 𝑛̅1

(1′) . The tangent vector was 

calculated based on the system kinematics. The tangent 
vector is represented by the expression: 

 

In equation (17), the derivative 
𝑑𝑀

2′1′

𝑑𝜑2
 is calculated from 

the equation (14) by inserting 𝜑1 =
𝜑2 

𝑖
. Expression 

expansion is not presented here due to its complexity. In 
general equation (12), the expressions (15) and (17) are 
introduced. After solving the equation (12), the set of 
solutions φ1 for a given values of the parameter u, is 
obtained. These parameters determine where there is a 
linear contact between the worm and wormwheel. After 
introducing these solutions to equation (10), the contact 
lines shown in the system x'1 y'1 z'1 of the machining 
worm, are obtained: 

 

The contact lines are shown in Fig. 3 in the system of 
the machining worm. In much of the gear work cycle, the 
globoid worm gear geometry creates two contact lines. 
One contact line is located in the axial plane of the worm 
(middle section of the wormwheel), is constant and is a 
straight-line contact. The second contact line is 
curvilinear, moving toward the first contact line to the 
overlapping point [1]. 

 

 

Fig. 3. Contact lines shown on the machining worm flank 
surface 

On the side surface of the wormwheel tooth, three 

regions are distinguished. Region II is the result of 

envelope of the tool, while regions I and III are formed by 

the extreme edge of the tool (Fig. 4) [1, 6]. 

Region II is obtained by turning the tool by a set value 

(rotation range from 0 to 2π), defining the tool and 

wormwheel contact lines as in Fig. 3. The solutions are 

chosen, which are not in the axial plane of the tool. Then 

the selected set of solutions should be transfomed to one 

flank of the wormwheel. An example solution for Region 

II is shown in Fig. 5. Regions I and III result from shaping 

the flank surface of the wormwheel by extreme cutting 

edge of the tool (𝑟1 (𝜑1=𝜑1p)

(1′)
). It was assumed that the 

extreme cutting edge in the tool model lies in the plane y1 

z1 (Fig. 1 and 3). Otherwise, the tool should be rotated by 

such an angle φ1 to meet this condition. 

 

         

 
Fig. 4. View of tooth flank in wormwheel with distinguished 
regions I, II, III [6] 
 

                        

 

Fig. 5. Region II of the wormwheel tooth flank in the tool system 

 

The surface generated during machining by the 

extreme edge of the tool in the machining worm system 

is represented by the expression: 

 

In the equation (19) in matrix M*1'1, the range of 

parameter φ1 should be chosen so as to obtain the 

surface of the wormwheel tooth flank with a given width 

(Fig. 6). This is accomplished by the value φ1p, φ1k with 

the step dφ1. 

From the surface in Fig. 6 determined on the basis of 

equation (19), regions I and III should be separated. The 

boundaries of the regions are two contact lines in the 

area of the extreme cutting edge of the tool (Fig. 3). For 

region I, it is a contact line not included in the axial plane 

of the tool, for region III, it is the contact line lying in the 

axial plane of the tool. 

The surface of the wormwheel tooth flank is formed by 

combination of regions I, II and III (Fig. 7). 
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Fig. 6. Surface generated during machining by the extreme 
edge of the tool  
 

 

Fig. 7. Surface of the wormwheel tooth flank in globoid worm 
gear 

 
Conclusions 

 
Defining the mathematical model of a wormwheel in a 

globoid worm gear is a complex process. After generating 
the worm and wormwheel lateral surface, the next stage of 
consideration is the analysis of gear, e.g. the contact 
pattern. 
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