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Presented is a comparison of different methods of 
estimating tool wear – obtained for group of RBF 
neural networks, hierarchical methods and the 
standard time counting. The analysis of the signals 
from the machining process carried out for three 
different experiments, clearly demonstrating the 
effect of presented methods. The results obtained for 
group of RBF neural networks are similar to results 
obtained for hierarchical methods. 
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As the demand for productivity and quality increases, 

the degree of automation of machining is increasing as 

well. One of the elements of this automation is the 

cutting process monitoring system. The basic task of 

these systems is to diagnose the tool condition. 

A cutting edge diagnostics algorithm based on a 

neural network team was built and tested. Its operation 

was compared with an algorithm based on a single 

neural network as well as with a hierarchical algorithm. 

The purpose of the study was to investigate whether an 

algorithm based on a neural network team can compete 

with a hierarchical algorithm built and refined in ITW PW 

within several national and European projects over the 

last dozen or so years. The hierarchical algorithm built 

on the principle of integrating estimates from individual 

measures has already exhausted its development 

potential. One of the development directions of tool wear 

diagnostic algorithms is neural network assemblies that 

could use synergies to estimate consumption on the 

basis of several measures at the same time. 

 

 

Analysis of the problem 
 
The most commonly used neural networks are used to 

integrate measures in tool wear diagnostics. It may be a 
perceptron with different number of hidden layers: 0 and 
1 [3, 8], 1 [9-11], and 1, 2 and 3 [2] with backward 
propagation as a learning algorithm. 

 
 

_____________________ 

 

 

Other neural networks are also used, such as the self-
organizing Kohonen network [6], the fuzzy logic network 
[7], the radial basis function network [4]. A review of such 
solutions can be found in the paper [1] - the author 
analyzes over 100 literature items. In addition to neural 
networks, fuzzy logic [12] can be used that can be 
supported by genetic algorithms [12]. A hierarchical 
algorithm was also used. The most popular network is a 
multilayer perceptron, but its optimization time (number 
of neurons, learning parameters and learning itself) is 
quite long. However, it has been shown that good results 
are achieved by using radial basis functions [4]. It has 
the advantage over the perceptron that its learning time 
is incomparably shorter. The whole process of optimizing 
network structure and parameters can be carried out in a 
few seconds. As a result, no additional production delays 
associated with the use of the cutting system are 
introduced. 

Comparison of the efficacy of different neural 
networks in the diagnosis of tool wear can be found in 
[13]. Following networks were tested here: 

 unidirectional network with one layer hidden taught by 
the method of reverse propagation, 

 unidirectional network with one layer hidden taught by 
the quasi-Newton method, 

 one-way network with one layer hidden taught by 
Levenberg-Marquardt method, 

 one-way network with one layer concealed taught by 
conjugated gradient method, 

 one-way network with one hidden layer taught by the 
Quick-Propagation method, 

 one-way network with one hidden layer taught by the 
Delta-Bar-Delta method, 

 network with radial basis functions taught by means of: 
K-means, explicit method, 

 network with radial basis functions taught by K-means, 
Isotropic method, 

 network with radial basis functions taught by K-means, 
Isotropic, pseudo-inverse, error propagation method, 

 network with function extension of the taught by 
method of error propagation. 
The results of this work also indicate that the Radial 

Basis Function (RBF) neural network has similar results 
to the MLP (MultiLayer Perceptron) network. 

Publication [5] compares the hierarchical algorithm 
and RBF network. The result was superior to the 
algorithm. However, it was obtained on the basis of a 
single experimental study, which could have been a 
coincidence. These studies were repeated by the authors 
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[15] using three distinctly different treatments (different 
treatments) for examining the experimental dependence 
of diagnostic signals on the tool condition. The results 
confirm the initial observation that a single neural 
network is much less effective as an algorithm for 
integrating multiple measures in a wear diagnostic 
system than a hierarchical one. 

A serious problem with using a single neural network 
is the need to maintain a proper ratio of the number of 
network inputs (measurements used) to the number of 
teaching data (limited by the economic necessity of 
minimizing the number of life periods intended for 
teaching). 

One solution to this problem is the initial fusion of 
measures by calculating the product of the quotient of 
sums, sums, etc. of individual measures [2]. This does 
not guarantee that the full information contained in the 
original measures will be used and a synergy effect will 
be used. Another solution is to determine the tool 
condition separately, based on a set of measures, and 
then integrate these partial responses. Such strategy 
was proposed in [14]. It consists of two parts: 

 stage of the tool wear estimation separately for each 
sensor based on the measurement of the signals 
coming from them and the cutting parameters; this 
uses a single network with radial basis functions for 
each sensor; 

 stage of integrating predictions from individual sensors 
into the final response of the system; This stage is 
done in the form of a set of fuzzy logic rules. 
 
 

Experimental 

 
When developing the wear diagnostics algorithm, text 

files with predetermined values were used, since it is 
very time-consuming to set up measurements from 
signal files, and to repeat the operation every time is 
unnecessary when testing a new version of the 
algorithm. During the previous work a software was 
created to generate text files with measures. The work 
contains only a very brief description of the algorithm, 
which determines the measure. For a more detailed 
description, see e.g. [15]. 

Three sets of experimental data were used to test the 
tool wear diagnostics strategy - each obtained from 
another machine tool and another machining task. 
Detailed information on these studies is given in the 
table. The files with diagnostic signals from these tests 
according to the described algorithm were measured and 
saved in text files. 

Before initializing the measurement in automated 
diagnostic systems, pre-treatment of the signal and 
cutting detection are necessary. Taring is the removal of 
the sensor offset. The average of 120 ms of the following 
signals is calculated as soon as 40 ms after the start of 
the working feed and the value is subtracted from the 
signal for the duration of the feed. Then, from the 400 ms 
signal, the value of the moving standard deviation is 
determined and the signal is filtered using a Butterwoth II 
low pass filter with a cutoff frequency of 1 Hz at 10 kHz 
sampling. Both of these signals are compared with 
thresholds, the value of which is determined at the step 
of removing the constituent from the signal. The standard 
deviation of this signal is multiplied by: 

 3 for a method based on a standard deviation, 

 5 for the filter-based method. 
 

TABLE. Study description 

 

 
Cutting is detected when the previously defined 

threshold (any of the two) is exceeded and must continue 
to run for a specified period of time (default 250 ms), 
which prevents false alarms from temporarily increasing 
the signal level. 

Likewise, the cutting end detection is running in the 
same way, but the waveforms must fall below the 
thresholds to which they relate, and this state also needs 
to be at least 250 ms. If more than one diagnostic signal 
is sampled in the system so that the system finds that the 
cutting has been detected, it is sufficient to detect it on 
any of them. Due to interference with various system 
installations on the machine tools during the installation 
of the diagnostic system, it is determined for each signal 
which method to detect on the channel. 

The next step in the measurement procedure is 
segmentation, that is, the selection of the signal segment 
representing the operation. In automated systems, 
segmentation must be carried out without operator 
intervention. 

In the system described in this article, segmentation 
was a division of the signal during its acquisition into 
fragments of 1 second length. Prior to performing these 
procedures, it is essential to select segments that best 
represent the state of the blade during machining. It is 
preferable that the signal to measure the measurements 
comes from a signal recorded at stable cutting, 
accompanied by stable signals. The method of 
evaluating signal immutability (for segment B adjacent to 
segments A and C) is described by equation (1). The 
lower the immunity, the better the segment is suitable for 
diagnostics. 

 

where: RMS - value of the segment respectively: A, B, C; 
FlB - signal stability rating indicator. 

 
To select the most stable segments, while maintaining 

their even distribution in the operation, they are grouped 
into six packages and each of them chooses the 
segment with the best rating. However, if you run the 
analysis on average every 6 seconds, you might find that 
with long machining operations common in the aviation 
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industry, today's computers will have too little computing 
power and memory to handle such a task. The way to 
avoid this problem is to eliminate the excess number of 
segments, because the diagnosis of the level of natural 
wear and tear need not be conducted online. 

Two elimination criteria were adopted. The first is the 
maximum number of segments in an operation. In the 
case of limiting the number of segments in an operation, 
the adjacent segments are sequentially grouped after the 
first object in the packets (so that each block contains as 
many segments as possible) corresponding to the 
constraint (maximum 20), then, the best segment is 
selected from each one. 

Due to this selection of tools with a small number of 
shelf-life operations, the diagnostic system makes a 
diagnosis often during processing. Differently - for tools 
with a long shelf life, which are able to do many things - it 
is acceptable to estimate consumption much less often. 

Signal from each selected segment is processed 
using the wavelet transform WP3 (all levels WP0 to 
WP3), the wavelet db2, and for each band are 
determined: energy, rms (effective value), mean value, 
standard deviation, modal value, threshold (for three 
different threshold values) and the dwell time above the 
threshold (for three different threshold values). In 
addition, Power Spectral Density (PSD) was determined, 
and energy was determined from the resulting signal. 

Each measure is approximated by the second order 
polynomial. As a model quality indicator, the mean 
square (RMSE) was assumed: 

 

where: Yi - value of measure in i-th operation, Ai - 
approximated value of measure in i-th operation, n - 
number of all operations. 

 
The RMSE indicator depends on the value received 

by the measure. To be able to compare this indicator for 
different measures, they should be normalized to one 
range. The range [0; 1]. After the first shelf-life, this 
indicator is a measure of the "smoothness" of the 
measure, and after successive shelf life - a measure of 
repeatability. However, it may turn out that several 
measures have very similar milestones and - 
consequently - very similar values of the quality index. To 
eliminate this phenomenon as a measure of similarity, 
the correlation coefficient between the model and the 
measure of the signal was used. 
 
 
Development of a blade wear diagnostic algorithm 
based on multiple neural networks 

 
One of the most commonly used methods of 

determining the state of a tool in industrial practice is to 
count the blade operating time/number of operations 
performed on a given blade based on the cutting 
time/number of operations performed on a master blade 
(usually the first). This method, however, has serious 
limitations due to the random nature of blade life. Next, 
more advanced methods for estimating blade wear 
based on diagnostic signals, which are suitable for use in 
automated tool status diagnostics are presented. 

 
 
 
 

Measure integration - hierarchical algorithm 
 
For each selected measure, a model is created based 

on the third degree polynomial. The polynomial values 
are written to a 120-element array, the index of which 
corresponds to the portion of blade life that is used in 
percent. Estimating the wear using a hierarchical 
algorithm can be divided into two steps: 

 Step 1: Searching for the model array of the measure 

for finding the nearest value to the result of the analyzed 
operation. One can search only above the previously 
obtained result. This prevents the indicated wear level 
from decreasing. Maximum n% of the initial point is 
searched, where n is the previous estimate of 
consumption, increased by twice the average increase in 
consumption per operation. This prevents very rapid 
increases in wear indicators, calculated on the basis of 
accidental indications. This also makes it possible to use 
non-monotonic measures. 

 Step 2: Averaging the estimates obtained for each 

measure. 
 
 

Integration of measures using multiple neural 
networks 

 
A RBF network consisting of a layer of concealed 

radial neurons and a liner neuron output layer was used. 
Radial neurons with base function based on exponential 
function were used. Learning the RBF neural network 
consists of three steps: selecting radial function centers, 
selecting the radial function radius, and selecting the 
neuronal weight of the linear output layer. 

The location of radial function centers is determined 
by the K-means method. The radial width is determined 
using the K-nearest method. The weight of the output 
layer is determined by the least squares method based 
on the comparison of the response of the learned radial 
layer algorithm and the value of the network response 
pattern. Radial neuron centers, their width and the weight 
of the linear neuron are selected in the learning process 
based on the learning data. Network learning parameters 
(which in the case of the RBF approximation method are 
the number of neurons, the number of neighbors, and the 
coefficient of radial function width) are selected on the 
basis of the network performance on the verification set. 

The number of radial neurons is selected from the 
range 2 ÷ 15 with step 1, the number of neighbors - from 
the interval 1 ÷ 5 with step 1, and the width factor - from 
the interval 0.6 ÷ 2 with the step 0.2. In the case of blade 
wear diagnostics, the learning and verifying set is 
created from the data that teaches the blade life 
expectancy by assigning to each other a sample. 

The network is built for each designated segment. If, 
during surveillance, the next network response is less 
than the previous estimate of system consumption, the 
estimate does not change. All selected measures are 
divided into groups of K measures where K can be freely 
adjusted. For each measure set a separate neural 
network is created, which is optimized on the learning 
and verification sets (based on these measures). In 
surveillance mode, the response of each network is 
compared to the last estimate of consumption. If it is 
smaller, the wear value is set to the last estimate. If the 
growth rate of response exceeds double the rate of 
growth of wear during the teaching period, then the 
response of the network is doubled of the increase in 
wear from the training periods. 
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Analysis of the effectiveness of different tool 
condition estimation methods based on own 
research 

 
Before analyzing the effectiveness of the various tool 

condition estimation methods, we conducted a study to 
determine the optimal repeatability threshold. The 
experiments consisted of conducting a series of 
experiments in search of the smallest RMSE, which used 
different methods of estimating blade wear (timekeeping, 
hierarchical algorithms, neural networks) for three 
different threshold values (8, 15, 25). As a result of the 
study, it was found that the optimal repeatability 
threshold (statistically the smallest RMSE) was obtained 
for a threshold of 15. 

The results of blade estimation using various methods 
(timekeeping, hierarchical algorithm and two-measure 
network) for three different experiments are summarized 
in the figure. The graphs represent the estimated portion 
of the blade life span (ΔT%) as a function of the actual 
portion of the blade life span for individual cutting blades. 
The graph also shows the RMSE (T) value, which is a 
measure of the effectiveness of the algorithm - the closer 
it is to the unity, the better the estimate of the wear. 

 

 

Fig. Results of blade wear estimation using various methods 
(time counting work, hierarchical algorithm, and a network of 
measures based on two measures) for three different 
experiments 

 
For two of the three studies, better results of counting 

the time worked were achieved from a hierarchical 
algorithm and network. Statistically, however, the best 
results were obtained for the hierarchical algorithm. The 
results of the network team can be considered 
comparable. The quality rating of RMSE may not be the 
most appropriate. Counting working time has the highest 
error where it is most important to make the error as 
small as possible – i.e. at the end of the shelf life. A low 
error in the first part of the period with the RMSE quality 
indicator favors this solution. The error for the network 
set is also large at the end of the period. However, the 
scattering of estimated values alone is small, giving you 
the opportunity to improve the algorithm's efficiency after 
eliminating systematic errors. 
 
 
 
 

Conclusions 
 
The tool condition monitoring system based on the 

RBF neural network assembly produces results similar to 
the hierarchical algorithm. There is, however, a 
systematic error that underestimates the estimates in the 
most important end-of-life period of the tool. After 
eliminating this error and taking into account the 
concentration of the results, it can be assumed that the 
network complex would be a better solution than the 
hierarchical algorithm. The network-based algorithm also 
has the potential to develop a new method for selecting 
measures dedicated to neural networks. 
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