
MECHANIK NR 3/2017 

The variables in the CNC control system

SINUMERIK Operate
Zmienne w układzie sterowania CNC SINUMERIK Operate

BOGUSŁAW PYTLAK * DOI: https://doi.org/10.17814/mechanik.2017.3.44

The types of variables occurring in the control
system SINUMERIK Operate are presented. The
system variables and user variables: R-parameters,
global R parameters, GUD variables, PUD variables
and LUD variables, with programming examples are
described. The indirect programming with using of
variables is discussed. The example of program for
thread milling is prepared, which shows the
differences of using of different variable types and
advantages this solutions.

KEYWORDS: variable types, CNC control system,
indirect programming, parametric programming

Parametric programming in the SINUMERIK control

system is based on the use of variables that, combined

with computational functions and control structures, pro-

vide high flexibility in programs, sub-programs and cy-

cles. The purpose of this article is to familiarize

SINUMERIK users with the different types of variables

and how they can be used in processing programs. Vari-

ables in the SINUMERIK control system can be divided

into: system and user [1].

System variables

System variables have defined meaning. They use

system software, they can also be read and written in
user programs. Despite the predefined meaning of
system variables, it is possible to change their properties
by so-called redefinition. System variables allow to
parameterize the control system and provide access to
the current state of control, machine, and processing.

These variables can be subdivided into preprocessing
variables and main run variables [1]. Preprocessing
variables are read and written when reading (interpret)
the program block, in which they were programmed.
They do not trigger preprocessing stops. In turn, the
main run variables are read and written at the time of
execution of the program block, in which they were
programmed. These variables include variables that are
programmed in synchronous actions, do not trigger
preprocessing stops variables, and variables the value of
which is determined in the preprocessing sequence, but
are only written in the main run.

* Dr inż. Bogusław Pytlak (boguslaw.pytlak.ext@ siemens.com)
– Siemens Sp. z o.o.

The standard denotation of system variables consists
of $ + first letter (type of data) + second letter (coverage).
System variables of the preprocessing process are as
follows [1]: $M - Machine data, $S - Set data, $T - Tool
data, $P - Programmable values, $C - Variable cycles
ISO, $O - Option data, R - Computing parameters.
System variables of the main run are [1]: $$M - Machine
data, $$S - Set data, $A - Current main data, $V - Servo
data, $R - Primary variables. Main run variables are
distinguished by the additional $ sign. It is reserved for
system variables and must not be used in user variables.

There are different areas of variables: N - Global
variables (NCK), C - Channel variables, A - Axis
variables. For a detailed list and description of system
variables, see the SINUMERIK control system
documentation [2].

Fig. 1. Windows: a) NC/PLC variable area, b) search and
selection of NC/PLC variables

a)

b)

+ MECHANIK NR 3/2017

The area → (fig. 1a) is provided for

displaying system variables. A variable can be displayed
on a given line by entering its name directly. One can

also use the button that opens the search window

and selects variables (fig. 1b).
In the SINUMERIK control system, most system

variables occur under two names. The first one, such as
$P_TOOLR, is the radius of the active tool and can be
used in programs. The other, e.g. /Channel/State/
actToolRadius[u1,1], is the same variable and is useful in
system software, such as COM files defining dialogs.
Designation u1 specifies the channel number; for
channel 2 it will be u2 and so on.

User variables

User variables include predefined variables in the

system and variables defined by the user itself. The type
of predefined user variables is predetermined and their
number is determined in the corresponding machine
data. These variables include: R parameters, global R-
parameters RG, Link variables. User-defined variables
are created on the system permanently or only at runtime
- the user has full control over them. These variables can
be grouped according to their scope of use: Global User
Data (GUD), Program User Data (PUD), and Local User
Data (LUD).

 R-parameters are among the most familiar predefined

user variables. They were already in the early versions of
the SINUMERIK control system and for the longest time
they were the only way to parametrize part of programs
and transfer parameters to cycles. Currently, with the
availability of other types of user variables, the meaning
of R-parameters is smaller, although they still apply. R-
parameters are an array of Real variables.

For better readability of R-parameters, an additional
description of the significance of the R parameter is often
included in the part program, e.g. in the form of a
comment in the part program: R10 = 200 ;coordinate w
of axis X. In the HMI version of Operate v.4.7, one can
see an additional column with their description (fig. 2).

Formally, referencing a given R-parameter should be
a reference to an array variable, e.g. R[10]=..., but for
historical reasons it is permissible to simplify the record,
e.g. R10=... R-parameters are channel variables, which
means that each channel has an identical set of R
parameters.

Fig. 2. R-Parameters window with additional column of
comments

 Global R-parameters RG. For the exchange of

information between channels, you can use the global R-
parameters RG available in HMI version of Operate v.4.7
(fig. 3) or GUD global variables. Similar global R-
parameters existed in the SINUMERIK 840C control
system, where R-parameters above R700 were
considered global. Global R-parameters RG should be
referred to as an array variable, e.g. RG[10]=...

 Link variables are used to cyclical exchange

information between different NCUs connected to the
network using the NCU-Link function. Link variables are
global - they can be written and read by machining
programs on all connected NCUs. For only one NCU,
Link variables can be used as additional global variables
for the user. The following variables are of type Link:
$A_DLB[<i>] – byte, $A_DLW[<i>] – word, $A_DLD[<i>]
– double word, $A_DLR[<i>] – Real, where <i> denotes
the variable index. This index changes from 0 to 1 for the
byte, 2 for the word, 4 for the double word, and 8 for
Real.

Fig. 3. Window of global R-parameters RG

 Global user variables GUD are variables that all

programs have access to. These are the ones that most
often supplant popular R-parameters. GUD variables can
be of any type and have any name; they are in non-
volatile NC memory. These characteristics determine
their great utility. In the SINUMERIK control system, they
are often used by machine manufacturers, for which the
MGUD.DEF definition file is provided, and the
UGUD.DEF definition file is then assigned to the users.
The GUD variables are defined as follows:

DEF <range> <preprocessing_stop> <access_rights> <da-

ta_class> <type> <physical_unit> <limit_values>

<name>[<value_1>, <value_2>, <value_3>] = <init_value>

where:
<range> – variable range: global NCK, channel CHAN;
<preprocessing_stop> – stopping moment of
preprocessing run: write, read, write + read variable;
<access_rights> – variable access level: for NC program
and control panel;
<data_class> – specifying the data class to which the
variable belongs (828D sl only);
<type> – variable type;
<physical_unit> – the unit in which the variable will be
expressed (REAL and INT only);
<limit_values> – lower LLI and upper ULI values of the
variable (REAL, INT and CHAR only);

MECHANIK NR 3/2017 

<name> – variable name (can not be used as a
command name for the SINUMERIK programming
language and variables already defined);
[<value_1>, <value_2>, <value_3>] – array dimensions
for array variable;
<init_value> – value that the variable takes at
initialization.

In the SINUMERIK control system, variables of the
following types can be defined: INT (Integer), REAL,
BOOL, CHAR, STRING [<max_length>], AXIS, FRAME.
Most of these types occur in computer programming
languages, but the AXIS and FRAME types that only
appear in the SINUMERIK programming language
require clarifications.

AXIS is an axial type, meaning that any axis of the
machine can be assigned to a variable of this type. In
turn, a coordinate transformation (TRANS, ROT,
MIRROR, SCALE) can be assigned to FRAME variable
or a combination thereof.

When discussing types of variables, it is important to
mention the great recommendation of the SINUMERIK
programming language, which is automatic conversion of
variables (if possible). Currently, it is possible to program
array variables up to three-dimensional, except for
STRING variables that may be two-dimensional (the third
dimension is contained in STRING itself, which is an
array of CHAR variables). Example syntax for global
definitions file for UGUD.DEF variables is as follows:

DEF CHAN SYNW APRP 1 APWP 1 REAL PHU 1 LLI 0

ULI 500 DIMENSION[10] = REP(12) ; full definition of GUD

variable

;CHAN – channel variable,

;SYNW – stopping the preprocessing run on save,

;APRP 1 – NC program readings at machine manufacturer

level,

;APWP 1 – NC program record at machine manufacturer

level,

;REAL – real type,

;PHU 1 – unit of length, mm or inch,

;LLI 0 – lower limit is equal 0,

;ULI 500 – upper limit is equal 500,

;DIMENSION[10] – array variable with 10 elements,

;REP(12) – initialize all array elements from value 12,

DEF CHAN REAL VARIABLE_1 ; simplified definition

DEF CHAN INT VARIABLE_2=2

DEF CHAN BOOL VARIABLE_3=FALSE

DEF CHAN CHAR VARIABLE_4=”a” ; or 97 acc. to ASCII

code

DEF CHAN STRING[10] VARIABLE_5=”TEKST”

DEF CHAN AXIS VARIABLE_6=(X)

DEF CHAN FRAME VARIABLE_7

M30

Fig. 4. Window Channel User Variables GUD

As it can be seen in fig. 4, the AXIS and FRAME

variables are not displayed in the user variable window,
and the FRAME variable can not be assigned an
initialization value. This can be done later, e.g. in a part
program, e.g. CHANGE=CTRANS(X,100,Y,200,Z,300):
CROT(Z,45), which means shift and rotation of the
coordinate system. The order of definition of variables in
a DEF file determines the order of displaying them in the
GUD window (fig. 4).

 Local user variables LUD are defined within a given

program (sub-program) of the processing. They are
created at the time of execution of a given program and
are deleted after its completion. Local variable definitions
are made at the beginning of the part program using the
DEF command (before EXTERN can be used). The DEF
syntax is as follows:

DEF <type> <physical_unit> <limit_values>

<name>[<value_1>, <value_2>, <value_3>] = <init_value>

There may be several variables of the same type

defined within a single DEF definition (only separated by
commas). Each new variable type must be defined in the
new block with a new DEF command. Normally, the LUD
variables defined in the main program are not visible to
the subroutine called from the main program. To become
visible, you must enable PUD user programmable
variables. To do this, set the machine data
$MN_LUD_EXTENDED_SCOPE=1. Then an additional
button with PUD variables appears.

 Programmable user variables PUD are defined in

the main program and all sub-programs of that program
are accessed. This allows to pass information between
the main program and the sub-program call. Previewing

and modifying user variables is done under →

.

+ MECHANIK NR 3/2017

The next buttons correspond to the individual variables:

global R-
parameters

R-parameters

global GUD

channel GUD

local user
variables

programmable
user variables

 Redefine variables. After defining user variables, as

with system variables, one can change their attributes
using the REDEF redefine command. In one REDEF
command, only one variable attribute can be changed:

REDEF <name> <attribute>

In the same command, the moment of the initialization

of the variable can be specified (i.e. setting of the
variable to the initialization value: INIPO - after Power
On, INIRE - after Reset, INICF - after NEWCONFIG
command, PRLOC - initialization of the variable,
programmatically adjustable by the reset only if it has
been changed from a part program).

For example: the set variable was initialized with
$SC_THREAD_START_ANGLE=0, which means a 0°
start angle for thread cutting. Programming a command
e.g. SF=45 changes the value of this data to 45°. By
setting the reset time using PRLOC after resetting to a
given setting, $SC_THREAD_START_ANGLE is again
set to 0.

 Obtaining information about variables. When

defining another variable, it may turn out that the variable
is already in the control circuit. It is recommended that
the name of the user variable starts with the underscore
character, but practice indicates that it is better not to use
the underscore + axis name, e.g. _A, as they are
internally used in machining cycles, and sometimes
cause definition duplication problems.

It can be used the ISVAR(<variable_name>)
command to check whether the variable entered in
<variable_name> exists to avoid double-definition of the
same variable, or for example to try to write or read a
non-existent variable. The result of this check is best
written to another BOOL variable. In addition to verifying
the existence of a given variable, you can get much more
information about it in the SINUMERIK control system:
GETVARPHU, GETVARAP, GETVARLIM, GETVARDFT
and GETVARTYP. These commands, like the ISVAR
command, return the specified numeric values that are
best written to the INT and REAL variables (fig. 5).

DEF BOOL IS_VARIABLE

DEF INT

UNIT,ACCESS_R,ACCESS_W,LIMIT_LO,LIMIT_UP,

STANDARD_VALUE,TYPE

DEF REAL LIM_L,LIM_U,VAL_STAND

IS_VARIABLE=ISVAR(”DIMENSION”) ;checking the exist-

ence of a variable

UNIT=GETVARPHU(”DIMENSION”) ;unit reading

ACCESS_R=GETVARAP(”DIMENSION”,”RP”) ;reading the

read permission

ACCESS_W=GETVARAP(”DIMENSION”,”WP”) ;reading

the write permission

LIMIT_LO =GETVARLIM(”DIMENSION”,”L”,LIM_L) ;lower

limit reading

LIMIT_UP=GETVARLIM(”DIMENSION”,”U”,LIM_U) ;upper

limit reading

STANDARD_VALUE=GETVARDFT(”DIMENSION”,

VAL_STAND,3) ;reading the value of an array element with

index 3

TYPE=GETVARTYP(”DIMENSION”) ;variable type reading

Fig. 5. Window of local user variables LUD with readings of
variable DIMENSION

 Indirect programming. User variables are often used

in so-called indirect programming. It involves using
variables in extended addressing. For example: to
program and activate the spindle rotation, the number of
which specifies the variable NO_SPINDLE, simply enter
the following program code:

DEF INT NO_SPINDLE=1

S[NO_SPINDLE]=2000 M[NO_SPINDLE]=3

Indirectly, one can also call sub-programs, for

example, with the CALL command, where the path and
program name (sub-program) can be specified with the
STRING variable, for example, with an INT variable with
program number:

DEF STRING[100] NAME

DEF INT NO_PROG=1

NAME="/_N_WKS_DIR/_N_EXAMPLE"<<NO_PROG<<

"_WPD/_N_EXAMPLE"<<NO_PROG<<"_MPF"

CALL NAME

MECHANIK NR 3/2017 

This example uses the << string join operator, which
allows to combine two STRING type strings and enclose
this variable with the INT type. Type conversion is done
automatically, as discussed earlier.

Another interesting option is to program G functions
indirectly. For this purpose, information is used about
which group G function is assigned and what position it
occupies in the group. For a detailed description of the G
function groups and positions occupied in these groups,
see the documentation [3] in Chapter 17.4. For example,
the table shows the G functions in group number 8.

TABLE. Group of functions G number 8: Zero offset
adjustment

To generate G54 zero offset and sequential, program

the following:

DEF INT NO_OFFSET

NO_OFFSET=2

G[8]=NO_OFFSET ;call G54

STOPRE ;stop the preprocessing run

NO_OFFSET=NO_OFFSET+1 ;increase NO_OFFSET by 1

G[8]=NO_OFFSET ;call G55

STOPRE ;stop the preprocessing run

NO_OFFSET=NO_OFFSET+1 ;increase NO_OFFSET by 1

G[8]=NO_OFFSET ;call G56

;…

It is also possible to indirectly program the NC code

using the EXECSTRING(<string_variable>). This
command converts string <string_variable> to NC code,
which is executed by control, e.g.:

EXECSTRING("S1000 M3")

EXECSTRING("G4 F10")

EXECSTRING("M5")

 Parametric programming. In the SINUMERIK control

system, different types of variables can be used in
machining programs. To illustrate the differences
between individual programs, a simple example of milling
a full inner thread of M52×5 in a 50 mm blank was
developed. The thread center coordinates are X50 Y50.
In the first variant the program is called. A fixed program
that does not use variables (except for the radius of the
active tool $P_TOOLR). In this program, the first block
G3 reaches the wall of the thread after a semicircle. In
the second block G3 is threaded full threaded thread. In
the last G3 block, the thread returns to the center of the
thread after the semicircle:

T="THREAD CUTTER"

M6

G17 G54 G94

WORKPIECE(,"",,"BOX",112,0,-50,-80,0,0,100,100)

G90 G0 X50 Y50 Z5 D1 F100 S2000 M3

G3 X=IC(26-$P_TOOLR) Y50 Z=IC(-5/4) CR=(26-

$P_TOOLR)/2

G3 X=IC(0) Y=IC(0) Z=IC(-60) I=AC(50) J=AC(50)

TURN=12

G3 X50 Y50 Z=IC(-5/4) CR=(26-$P_TOOLR)/2

G0 Z5

M2

In the second variant, the parameterization of the

program was made using R-parameters. In this example,
attention should be paid to the parameterization of the
blank visible during simulation, so called. WORKPIECE,
whose dimensions have also been parameterized.
Similar parameters can be entered in other G code
cycles, as well as ShopMill and ShopTurn. As you can
see, the use of R-parameters requires an additional
description of their meaning in the form of comments:

R0=50 ;coordinate of the center in axis X

R1=50 ;coordinate of the center in axis Y

R2=5 ;start height in axis Z

R3=52 ;diameter of diameter of milling thread

R4=5 ;thread pitch

R5=12 ;number of turns

T="THREAD CUTTER"

M6

G17 G54 G94

WORKPIECE(,"",,"BOX",112,R2-5,-R4*(R5-2),-80,R0-

50,R1-50,R0+50, R1+50)

G90 G0 X=R0 Y=R1 Z=R2 D1 F100 S2000 M3

G3 X=IC(R3/2-$P_TOOLR) Y=R1 Z=IC(-R4/4) CR=(R3/2-

$P_TOOLR)/2

G3 X=IC(0) Y=IC(0) Z=IC(-R4*R5) I=AC(R0) J=AC(R1)

TURN=R5

G3 X=R0 Y=R1 Z=IC(-R4/4) CR=(R3/2-$P_TOOLR)/2

G0 Z=R2

STOPRE

R0=0 R1=0 R2=0 R3=0 R4=0 R5=0

M2

In the next example, LUD user variables defined at the

beginning of the program are used for local parameters
(e.g. GUD variables defined in UGUD.DEF file). This
case is much easier to read because after the name of
the variable you can see what it means:

+ MECHANIK NR 3/2017

DEF REAL COOR_X, COOR_Y, COOR_Z,DIAMETER,

PITH,TURN_NO

COOR_X=50 ;coordinate of the center in axis X

COOR_Y=50 ;coordinate of the center in axis Y

COOR_Z=5 ;start height in axis Z

DIAMETER=52 ;diameter of diameter of milling thread

PITH=5 ;thread pitch

TURN_NO=12 ;number of turns

T="THREAD CUTTER"

M6

G17 G54 G94

WORKPIECE(,"",,"BOX",112,COOR_Z-5,-PITH*(TURN_NO-

2),-80, COOR_X-50,COOR_Y-

50,COOR_X+50,COOR_Y+50)

G90 G0 X=COOR_X Y=COOR_Y Z=COOR_Z D1 F100

S2000 M3

G3 X=IC(DIAMETER/2-$P_TOOLR) Y=COOR_Y Z=IC(-

PITH/4)

CR=(DIAMETER/2-$P_TOOLR)/2

G3 X=IC(0) Y=IC(0) Z=IC(-PITH*TURN_NO)

I=AC(COOR_X)

J=AC(COOR_Y) TURN=TURN_NO

G3 X=COOR_X Y=COOR_Y Z=IC(-PITH/4)

CR=(DIAMETER/2-$P_TOOLR)/2

G0 Z=COOR_Z

In the fourth example, the THREAD_MILLING

parametric sub-program was created in the Subprograms
directory (need to use the EXTERN command), where
the thread milling process itself takes place. The rest of
the commands needed to perform the machining and
calling the parametric subroutine THREAD_MILLING are
in the main program.

In the example for the THREAD_MILLING sub-
program, the parameters are passed in three ways: by
means of fixed values, via R parameters, and via LUD
local variables.

EXTERN

THREAD_MILLING(REAL,REAL,REAL,REAL,REAL,REAL)

DEF REAL COOR_X, COOR_Y, COOR_Z,DIAMETER,

PITH,TURN_NO

COOR_X=50 R0=50 ;coordinate of the center in axis X

COOR_Y=50 R1=50 ;coordinate of the center in axis Y

COOR_Z=5 R2=5 ;start height in axis Z

DIAMETER=52 R3=52 ;diameter of diameter of milling

thread

PITH=5 R4=5 ;thread pitch

TURN_NO=12 R5=12 ;number of turns

T="THREAD CUTTER"

M6

G17 G54 G94 D1 F100 S2000 M3

WORKPIECE(,"",,"BOX",112,COOR_Z-5,-PITH*(TURN_NO-

2),-80, COOR_X-50,COOR_Y-

50,COOR_X+50,COOR_Y+50)

THREAD_MILLING(50,50,5,52,5,12) ;or

THREAD_MILLING (R0,R1,R2,R3,R4,R5) ;or

THREAD_MILLING(COOR_X,COOR_Y,COOR_Z,DIAMETE

R,PITH, TURN_NO)

R0=0 R1=0 R2=0 R3=0 R4=0 R5=0

M2

In turn, the content of the THREAD_MILLING sub-

program is as follows:

PROC THREAD_MILLING (REAL _COOR_X,REAL

_COOR_Y,REAL _COOR_Z REAL _DIAMETER,REAL

_PITH,REAL _TURN_NO) SAVE

G90 G0 X=_COOR_X Y=_COOR_Y Z=_COOR_Z

G3 X=IC(_DIAMETER/2-$P_TOOLR) Y=_COOR_Y Z=IC(-

PITH/4) CR=(_DIAMETER/2-$P_TOOLR)/2

G3 X=IC(0) Y=IC(0) Z=IC(-_PITH*_TURN_NO)

I=AC(_COOR_X) J=AC(_COOR_Y) TURN=_TURN_NO

G3 X=_COOR_X Y=_COOR_Y Z=IC(-_PITH/4)

CR=(_DIAMETER/2-$P_TOOLR)/2

G0 Z=_COOR_Z

RET

In the parametric sub-program THREAD_MILLING, an
additional underline was added to the sub-program to
distinguish the main program from the sub-program
names. In order for the THREAD_MILLING sub-program
to become a cycle, simply copy it into the User Cycles
directory and restart the control system. From this point
on, the main program will no longer need the EXTERN
command when the cycles do not require it.

REFERENCES

1. „SINUMERIK 840D sl/828D. Job planning.
Programming manual”. 10/2015, 6FC5398-2BP40-
5NA3.

2. „SINUMERIK 840D sl/828D. System variables.
Parameter Manual”. 10/2015, 6FC5397-6AP40-5BA3.

3. „SINUMERIK 840D sl/828D. Fundamentals.
Programming manual”. 10/2015, 6FC5398-1BP40-
5NA3.

■

