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Automatic tool condition monitoring is based on the meas-
urements of physical phenomena which are correlated with 
this condition. There are numerous signal features (SFs) that 
can be extracted from the signal. As it is really not possible 
to predict which signal features will be useful in a particular 
case they should be automatically selected and combined 
into one tool condition estimation. This can be achieved by 
various artificial intelligence methods. 
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Striving for more and more reliable production 
processes creates the need for continuous monitoring. 
Automated tool and process diagnostics (DNiPS) is 
becoming an indispensable part of ensuring quality 
products and low cost. The diagnostic system should be 
able to detect catastrophic blunting of the blade (KSO) or 
excessive wear and tear of the tool, and to replace it with 
new ones in a timely manner, and to identify other 
abnormalities such as unwanted form of chips or self-
excited vibration. There are many extensive status 
reviews, such as [21], which present a variety of ideas 
and approaches to solve the problem of automated 
diagnostics. Still, the problem is still far from resolved 
because the existing systems are based on fuzzy, 
incomplete and randomly disturbed data coming from 
sensors that measure the phenomena occurring in the 
cutting zone. 

 

 

Fig. 1. Structure of monitoring, diagnostics and supervising system 
of tool and cutting process [6] 

 
The purpose of this paper is to briefly present the 

issues of automatic monitoring, diagnostics, and tool 

status monitoring and cutting. Concepts in this area are 
sometimes used interchangeably, and sometimes they 
are confused, so they are arranged in fig. 1. 

 
Physical variables and sensors used in DNiPS 

 
The wear of the cutting tool results in the loss of blade 

material and in consequence, the change in its geometry, 
which in turn entails changes in cutting forces and 
derivative quantities (torque, engine power, deformation 
of machine parts or tool). Therefore, it is the cutting 
forces that are most commonly used in DNiPS. For 
turning, tapping and other machining – mainly using 
small pinch tools – force and cutting torque sensors are 
used. When milling, especially multi-axis, the force 
sensor installation is significantly impeded due to the 
complex movements of the tool and the object, therefore 
engine power sensors are relatively readily used [11]. 

Acoustic emission (AE) is the formation and 
propagation of decaying elastic waves, which is the 
result of the sudden release of energy of internal bonds 
damaged by deformation, cracking, etc. There are many 
AE sources in the cutting zone such as: cracking of the 
workpiece, chip and tool; Tool friction with workpiece and 
chip with rake surface; Shear and plastic deformation of 
the workpiece [10, 12]. Contrary to the misleading name, 
the AE frequencies used in DNiPS start at about 80 kHz 
and reach 1 MHz, so they are very high – much higher 
than the audible band (20 Hz ÷ 20 kHz), as well as the 
band of shear or vibration. Like the sound, the AE 
spreads in solid bodies and liquids in accordance with all 
the laws of refraction and reflection, but air is the 
emission barrier. Emissions are very strong even with a 
small section of cut and almost imperceptible cutting 
forces. For this reason, AE is used for small overheads 
and wherever it is difficult to install a force sensor. 

Mechanical vibrations are the least used variable [4], 
especially suitable for drilling small holes. As is well 
known, blunt drill drum, i.e. high frequency oscillation (in 
the order of several kHz). 

Sensors used in DNiPS are typically designed for 
these systems – adapted to the tough conditions of the 
cutting zone, and therefore resistant to coolant and 
striking shavings. The table lists the types of sensors 
offered by leading manufacturers of commercial DNiPS 
systems. 
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TABLE. Sensors used in commercial DNiPS systems 

Physical variable 

(sensor type) 

Manufacturer of DNiPS systems 
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Power       

Torque       

Deformation       

Distance       

Force sensor       
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Acoustic 
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Liquid AE 
sensor 

      

Rotating AE 
sensor 
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Vibrations and 
sound 

      

Camera       

Laser       

 
Signal processing in DNiPS 

 
In the diagnostics of tool state and cutting process, a 

whole variety of signal processing techniques known 
from other fields, including general machine diagnostics, 
is used. Here are only some aspects of this treatment 
specific to DNiPS. 

 

 

Fig. 2. General scheme of signal processing in DNiPS 

 
■ Initial signal preparation. Analog signals from the 

sensor are typically subjected to a pre-processing 
analogue, such as filtering to eliminate interference, or 
selecting an interesting frequency band or amplifier that 
matches the signal range to the A/C converter. Analog 
pre-processed signals are converted to digital form and 
further processed to determine the characteristics of the 
signal that may serve as a symptom. However, automatic 
diagnostics can not be carried out on all (continuous) 
signals from sensors as they include signals collected 
during rapid movements and run and run. It is therefore 
necessary to automatically select fragments derived 
solely from cutting. The simplest and most common way 
of identifying cutting is to detect the excess by the 
operator of the limit value in the time window that he 
selects. This method is inconvenient, prone to 
interference and human error, and ineffective in the case 
of falling signals, which sometimes happens. It is more 
efficient to use low-pass filtered all available signals and 
their standard deviations, and to detect cuts based on 
the integration of these measures [3]. Moreover, online 
diagnostics based on long signal fragments is not 
possible for modern computers because of the need to 

analyze large numbers (even several hundred) of 
measurements. On the other hand, to analyze the 
degree of wear of the tool it is sufficient to analyze the 
short segments of the signals. Most signal segments are 
derived from set values. Measurement of the variation of 
the signal segment B – i.e. the indicator of how much its 
effective value differs from neighboring fragments A and 
C – may be the value of the factor FlB [3]: 

      
      

      
     

      

      
    (1) 

All signal recorded during cutting is thus divided into 
seconds segments, from which the appropriate (small) 
number of segments least different from their neighbors 
are selected. 

 
■ Determination of time-domain signals. Pre-

prepared, limited to cutting pieces of digital signal, time-
domain measures are determined. Most commonly used 
are: mean, amplitude, range, peak factor, effective value, 
variance (or standard deviation), skewness, kurtosis, 
power, ratio or increment of signals. Some measures are 
typically used for vibration and AE signals – these are 
the number or rate of pulses or outbursts, and the pulse 
or burst width (percentage of time above the threshold) 
[10]. There are also time series modeling techniques: 
auto-regression (AR), moving average (MA), and 
combination of these techniques (ARMA) [15]. Signal 
measures are AR, MA or ARMA of the first or first and 
second order, less often the third, fourth and fifth order 
[20]. At present, the principal component analysis (PCA) 
and the singular spectrum analysis (SSA) are sometimes 
applied. PCA is one of the statistical methods of factor 
analysis, widely used to identify and reduce the size of 
systems. A data set consisting of N observations, each of 
which includes K variables, can be interpreted as a cloud 
of N points in a K-dimensional space. PCA consists of 
such a rotation of the coordinate system that maximizes 
the variance of the first coordinate, then the variance of 
the second coordinate, etc. Converged co-ordinates are 
referred to as the loads of generated factors (main 
components). 

 

 

Fig. 3. Pie charts of cutting force signals at different blade wear 
times [17] 

 
Shi and Gindy [18] used the signals of two 

perpendicular cutting force components for pulling into 
the blade wear diagnostics. The results of the 
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measurements produced characteristic, distorted ellipses 
in the 2D space of shape and position clearly correlated 
with wear (fig. 3). The PCA designates the axial length 
(a/b) and the ellipse (β). The means of ellipses are the 
mean values of forces. Measurements of signals used for 
diagnostics are: Fy,śr, Fz,śr, a, b, β. 

SSA is a technique of nonparametric time series 
analysis. It depends on the distribution of the signal into 
three independent components: the slow-moving trend 
representing the local mean, the difference between the 
signal and the average (oscillatory component) and the 
noise devoid of any structure [13]. These three 
components are treated as new signals, and they 
describe the basic measures discussed earlier (e.g. 
mean, variance, RMS, skewness, kurtosis). 

Another interesting measure of the complexity of time 
series used in DNiPS is permutation entropy [11]. The 
smaller the permutation entropy, the more regular the 
time series. From the time series x[i], i = 1 ... n can be 
obtained n! permutation π (settings in different order). 
The permutation entropy of such a series defines the 
relation: 

 

                   
  
    (2) 

 
where: p(πi) – relative permutation frequency of πi 
occurrence. 

 
The normalized permutation entropy is then described 

by the formula: 
 

   
     

      
 (3) 

 
Li et al. [11] used this measure to detect KSO on the 

basis of the motor signal during finger milling. During 
normal cutting, the signal is regularly periodic and the Hp 
is low. After the occurrence of KSO, this regularity falls 
significantly, which is accompanied by a jump in the Hp 
value. 

 
■ Determination of measure signals in the 

frequency or time and frequency domain. Digital 

signals in the time domain can be transformed into the 
frequency domain or time and frequency domain. 
Frequency signals are usually based on one of many 
available algorithms – the fast Fourier transform (FFT), 
which converts a time series of N elements x[n], n = 0 ÷ 
(N – 1) to discrete representations in the domain 
Frequency X[m], m = 0 ÷ (N – 1): 

 

                      
     (4) 

 
The direct application of the Fourier coefficients X[m] 

is impractical both for their considerable number and for 
the spectral leakage. The measure of this transformation 
is therefore measured: the amplitude of the dominant 
components, the power or energy in the selected bands, 
the average frequency, and the previously discussed 
measures that are used for time signals [4, 10, 20]. 
Although the signals coming from the cutting zone are 
generally non-stationary, the FFT averages the 
frequency components after the signal duration with a 
constant resolution equal to the inverse of that time. In 
order to include the temporal variability in time, a time-
frequency analysis is used, such as the short-wave 
Fourier transform (STFT), in which the window w[n] is 
moved along the time axis so that subsequent FFT 

transformations represent changes in frequency 
components in successive short periods of time. 
Marinescu and Axinte [12], who used AE signals to 
detect KSO at milling, used the STFT to precisely 
determine the start and stop times of individual blades, 
i.e. signal segmentation. 

STFT as a method of time-frequency analysis has a 
major drawback: the length of the window determines the 
resolution in both areas – time and frequency. Both can 
not be arbitrarily large and the improvement of one 
reflects on the deterioration of the other. The problem is 
opposite the wavelet transform (WT), where high 
frequencies are analyzed with narrow windows for better 
resolution in the time domain, and low – wide windows, 
giving better resolution in the frequency domain. Discrete 
wavelet transform (DWT) distributes the signal to scale 
factors (so-called approximations of A) and wavelengths 
(so-called D details) using low and high pass filters. Filter 
responses are binary (every second sample is taken). 
The first approximation of A1 is again decomposed into 
A2 and D2. In general, approximation Aj+1 and detail Dj+1 
can be described as: 

 

                        
     (5) 

                        
     (6) 

 
where h and g are pulse responses of low and high pass 
filters (scaling and wavelet functions). 

 
Another type of WT is packet wavelet transform 

(WPT), in which further decomposition is subject not only 
to approximation but also to detail. This allows for more 
useful signal measurements. As in the case of Fourier 
transforms, wavelet coefficients are generally not used 
directly, but they determine the measures used for time-
domain signals. 

Another relatively new time-frequency analysis 
method used in DNiPS is the Hilbert-Huang transform 
(HHT), which is particularly useful for non-stationary and 
nonlinear signals that can change even within a single 
oscillation period. Unlike STFT or WT, the HHT method 
is rather an algorithm (due to the empirical approach) 
than a theoretical one. It uses two signal processing 
techniques (two steps): 
● empirical decomposition of the signal into nonlinear 

modal components (as opposed to typical harmonic 
components, these functions may vary in amplitude 
and frequency in the time domain), 

● a Hilbert transform that determines changes in 
amplitude and frequency of signal components over 
time and produces the resulting time-frequency 
distribution (Hilbert's spectrum). 
Peng [13] applied this method for detecting KSO 

based on the cutting force signals in milling. KSO can be 
detected directly in the Hilbert spectrum or through 
modal components associated with characteristic milling 
frequencies. After the KSO occurs, the energy of the 
characteristic components changes in the opposite 
direction, unlike changing the cutting parameters. 

 
■ Selection of signal measures. As it is generally 

not possible to reliably monitor the state of the tool and 
the cutting process on the basis of a single signal 
measure, and it is not possible to predict in advance 
what signal measures will be useful in a particular 
application, it is commonly believed that the 
determination of a sufficiently large number of measures 
is a key a problem in any DNiPS system. The number of 
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selected signal measures must be large enough to 
compensate for accidental interferences (which are 
unavoidable) and, on the other hand, to remove 
unnecessary or uncorrelated measures. While the 
measurement of signals is a problem well known for 
many other uses, the choice of measure is often 
underestimated, although its importance for the efficiency 
of the diagnostic system is enormous. In industrial 
applications, the choice of measures must be carried out 
automatically, with or without operator input. Meanwhile, 
according to a very interesting classification of the 
procedures for the selection of measures for the 
diagnosis of blade wear at turning, presented by Sick 
[19], 38% of the 138 analyzed publications of signal 
measurements were selected without any justification (or 
based on bibliographic data), 26% They were defined 
after the analysis of the measured signals, and in 21% 
the most useful measures were selected without taking 
into account the resulting wear assessment of the blade. 
Only in 15% of analyzed publications, the optimal set of 
measures was determined after analyzing the impact of 
this choice on the wear assessment of the blade. 

In laboratory diagnostic systems, as a measure of 
blade wear, geometric measures of wear are generally 
used (the width of the VBB application surface or the 
depth of the KT crater). However, in industrial conditions 
such indicators are rarely used. For this reason, it was 
proposed in [7] that a part of its durability (ΔT) was used 
as a measure of blade wear, defined as the ratio of the 
previous cutting time (t) to the total shelf life (T): ΔT = t/T. 
This makes it possible to evaluate the state of the tool 
from the wear indicator, to use several indicators at the 
same time or from discrete indicators, blunting, burrs, 
chipping, blade breaking, etc. [9]. 

Evaluation of the usefulness of signal measures (MS) 
depends on their further use and can be carried out in 
many ways. Monitoring itself is always based on some 
model of the measure of the state of the tool state (fig. 
4). The model may be e.g. approximation of a second or 
third degree polynomial or a low pass filtered waveform. 
The diagnostic system must determine this dependency 
(model parameters) and then invert it to determine the 
state of the tool (fig. 4b). 

 

 

Fig. 4. Model of dependence of signal measure on the state of tool 
(a) and its use in diagnostics of this state (b) 

 
Some researchers (e.g. [15, 16]) to find the best 

measure of blade wear, used the Pearson r correlation 
coefficient between the measure and the wear value – 
assuming the lower the value, the less chance that the 
measure would show any dependency on the blade 
wear. It is ignored that even if the measure is perfectly 
correlated with wear, but the correlation is nonlinear, the 
correlation coefficient r<1. 

In order to avoid the uncertainty associated with the 
modeling of the relation of the measure of the state of the 

tool in [9], the use of the determinant Rs
2 was proposed. 

It indicates the extent to which any model yields 
experimental values, or – in other words – how much this 
model of dependence of an MS signal on a tool state 
better describes the actual course than its mean value 
      . The determination coefficient is expressed by the 

relation: 
 

  
  

       

   
 

               
 
             

 

               
  (7) 

 

where:                   
 – total sum of squares; 

                
 – residual sum of squares; CSK – 

RSK = ZNK – abolished the sum of the squares;           

– successive values of measured and modeled values in 
the normalized points of the used part of the shelf life (i = 

0÷100);        – average measure. 
 

Measures, for which the Rs
2 value is higher than the 

assumed threshold, e.g. Rs
2 > 0.4, are accepted. 

The tool status monitoring system should be ready for 
use at the end of the first shelf life. However, after the 
second shelf life has expired, the selection can be 
repeated using all recorded data. Rs

2 coefficients are 
then calculated for two periods and averaged. It is also 
possible to introduce a second, even more important, 
criterion for the usefulness of measures – repetition. It is 
determined using the second determinant Rr

2, which 
compares the models created automatically on the basis 
of the first and second shelf life: 

 

  
  

                    
 

                      
 

 

                    
 

 

 (8) 

 

where:       – modeled value of the     measure at the 

i-th point (i = 0÷100) and the j-th term of life (j = 

1÷2),        
   

 

 
        – average value of the 

    model at the i-th point,       
   

 

   
          – average of all     values for the two 

shelf life periods. 
Measures, for which Rr

2 is higher than the assumed 
threshold (e.g. Rr

2 > 0.6) are considered sufficiently 
reproducible. Of course, the procedure can be repeated 
after the third shelf life. 

Al-Habaibeh and Gindy [1] searched for signal values 
depending on the milling condition, using the mean 
values of the dependencies obtained from the orthogonal 
Taguchi matrices as indicators of the usefulness of a 
combination of measurements from a particular sensor, 
to detect dullness of the tool (the stronger dependence, 
the more useful the sensor). Sun et al. [20] identified the 
most useful measures using Bayesian model and 
support vector machine (SVM). An error was evaluated 
for the condition of the tool modeled using the selected 
measure with the actual state (acute), and the worst 
measures were eliminated. 

Another way to verify the usefulness of measures is 
statistical overlap factor (SOF), which determines the 
degree of separation of measure values corresponding to 
sharp and blunt tools [17]. This coefficient is defined as: 

 

     
                 

         
  (9) 

 

where:       
           

     – the mean and standard deviation 

of the measurement values for sharp (1) and blunt tool 
(2), respectively. 
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The authors [17] noted that in the automatic selection, 
measures are often too close or similar to one another, 
which contradicts the goal of integrating different 
measures. In such cases, they recommended 
"engineering evaluation", which limits the automatism of 
choice and forces manual intervention by the operator or 
rather the researcher. Such a procedure is not 
acceptable in industrial conditions, so in [9] the measures 
that met the condition of bonding to the blade state 
(Rs

2 > 0.4) were sorted in decreasing respect to Rs
2, then 

the first (best) and the Pearson correlation coefficient r2 
between this measure and each next. Measures for 
which r2 > 0.8 were rejected as too closely related to the 
best. Of the remaining measures again, the best was 
selected and the measures associated with it were 
rejected. 

Binsaeid et al. [2] also assessed the suitability of the 
measure based on the correlation of a single measure 
with the state of the blade and correlation between the 
measures. The coefficient of usefulness of the measure 
was determined by the relation: 

 

  
     

             
 (10) 

 

where: N – number of measures,           – mean 

correlation of tool-measure and measure-measure. 
 
Correlation was investigated by entropy measures. 

The high score is achieved by measures well correlated 
with the state of the tool and at the same time poorly 
correlated among each other. 

 
Integration of measures, state assessment 

 
Measures of signals useful for tool status 

determination, automatically determined according to the 
algorithms described above, must be integrated, which 
means that the tool state must be determined based on 
the part of the blade life span used. There are many 
methods of such integration, such as statistical modeling, 
autoregressive methods, pattern recognition methods, or 
expert systems. Especially artificial intelligence methods 
such as neural networks, genetic algorithms or fuzzy 
logic, as well as hybrids of these methods are particularly 
popular [5, 21]. The most popular are neural networks, 
and among them multilayer perceptron with the method 
of backward error propagation [22]. As a rule, a single 
neural network is used to input selected signal 
measurements, and an estimate of the selected blade 
consumption index is obtained. In [8], it has been shown 
that the number of learning data obtained during one 
blade life span is too small relative to the required 
network size required to map the complex dependencies 
of the plurality of measures on the tool state. Similar to 
other methods of artificial intelligence – large numbers of 
measurements require a large amount of learning data 
available only after a few or even a dozen or so periods 
of durability. This problem can be solved using 
hierarchical algorithms [8, 9], where the state of the tool 
is evaluated first based on each selected measure or 
several measures separately, and then integrates the 
obtained scores, e.g. by averaging. 

 
Example of a tool status diagnostic system operation 

 
In order to illustrate the issues discussed in this paper, 

we present work of the tool status diagnostic system on 

the example of ADONiS system (acronym for automatic 
diagnosis of cutting tool blades), developed by the team 
of the Automation and Machining Department of the 
Faculty of Production Engineering, Warsaw University of 
Technology [3, 8, 9]. The study was conducted on a 
Venus 450 lathe with a cutting force sensor (Kistler 
9601A31) installed under the transverse slide (fig. 5a) 
and an acoustic emission sensor (Kistler 7815B121) 
located on the support. Four signals were measured: Fc, 
Ff and Fp, as well as AERMS. Workpieces were steel 
rollers with a diameter of Ø160 mm. The operation plan 
(fig. 5b) consisted of 22 consecutive coarse passes with 
ap = 1.5 mm (13 passes) and ap = 2 mm (9 passes), f = 
0.1 mm/rev and vc = 150 m/min – and one finishing pass 
with the same feed rate and cutting speed, but with 
variable cutting depth. SCGCL turning knives with CNMG 
10408 BP30A cemented carbide blades were used. 
Machining of one item lasted 4.6 min, including a cutting 
time of 3.6 min. Eight tools were dugged after processing 
8, 10, 10, 12, 10, 9, 14, and 10 items respectively. 

Cutting detection was based on the low-pass filtered 
values of all four signals. After the start of the working 
feed, and prior to cutting, the system calculated the 
mean values of the signals and subtracted them by 
removing the offset. 

The standard deviation values at tool run time σ0 are 
used to automatically determine the thresholds of filtered 
Sf values and their standard deviations σc. Exceeding 
any signal of the appropriate threshold (Sf > 5σ0 or 
σc > 3σ0) means initiating the cutting. The cutting break is 
detected when all measures (mean values and standard 
deviations) that exceed their thresholds fall below the 
thresholds. All of these activities are performed 
automatically, with or without operator knowledge. 

 

 

 

Fig. 5. Method of installing the sensors (a), operation plan (b) and 
elimination of segments (c) 
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Fig. 5c shows an exemplary waveform of the Fc force and 
the results of the segment selection procedure. After the first 
operation (top row in fig. 5c), 165 one-second segments 
were identified during the cutting, 19 of which were selected, 
taking into account the criterion of invariance with respect to 
the neighbors – equation (1). After seven operations, there 
were already 19 × 7 = 133 segments in the memory of the 
system, so more than the maximum of 128, so each of the 
two selected better (more close to the neighbors), leaving 
10 segments per operation. 

Each of the four measured signals was automatically 
processed using packet wavelet transform for 14 
coefficients (approximations and details – Equations (5) 
and (6)), which automatically calculated the following 
measures: 
● logarithmic energy (e.g. Fc/DD.E – for coefficient DD of 

signal Fc), 
● effective value (e.g. Ff/ADA.RMS – for coefficient ADA of 

signal Ff), 
● standard deviation (e.g. Ff/A.st_dev for coefficient A of 

signal Ff), 
● mode (e.g. AE/s.mode for the original AE signal), 
● explosion rates 1, 2 and 3 – number of thresholds 

exceeded 30%, 50% and 70% of maximum value (e.g. 
Fp,ADA,Count1), 

● width of outbreaks 1, 2 and 3 – percentage of time 
above thresholds (e.g. Fp,ADA,Pulse1). 

 

Fig. 6. Signals of the feed force in three operations (a); examples of 
signal measures selected and modeled by ADONiS in sections 1, 4 
and 7 (b); estimation of the used part of blade life span in periods 
2÷8 (c) 
 

Since all procedures are automatic (no operator 
involvement required), a different number of other 
measures are assigned to each segment. Their 

examples in three of the eight operations of the first shelf 
life are shown in fig. 6b (blue lines). At the end of this 
period for each segment, ADONiS set a separate model 
based on the approximation of the second degree 
polynomial (black continuous lines in fig. 6b). During 
operation of the next tools, the system worked in a 
diagnostic mode. After collecting data from each selected 
segment, the system determined the part of the shelf life 
used separately from each measure. 

For example, for the first segment in the third 
operation, ΔT estimated from the first and second 
measures – AE/s.mode and Ff/A.E – were respectively ΔT1,1,3 
and ΔT1,2,3 (fig. 6b). After their averaging, the estimated 
portion of the shelf life of the blade at that moment (for 
the segment) was estimated: 

 

      
 

  

        
  
  (11) 

 
where: i – segment number, j – number of measure for 
the segment, k – number of operations, Mi – number of 
measures in the segment i. 

Results of the supervising are shown in fig. 6c as used 
parts of the shelf life estimated by ADONiS – ΔTosz as a 
function of experimental values ΔT for tools 2÷8 (the first 
shelf life was used to teach the system). 

The accuracy of the used part of the shelf-life was 
assessed by means of a mean square error (RMSE): 

 

      
 

 
             (12) 

 
Because ΔT is expressed as a percentage, RMSE can 

be interpreted as an average percentage error estimate. 
Its value is also given in fig. 6c. 

Presented estimates of the tool state during operation 
is especially important in the aviation industry, where 
machining of one item may take several minutes, and a 
number of tools (e.g. [9]) need to be performed for one 
operation. 

 
Conclusions 

 
The paper discusses issues related to the tool status 

diagnostics, in general. It is particularly important to 
designate as many measures as possible from all the 
available signals and their automatic (without operator 
involvement) evaluation and selection. Measures 
integration can easily be done in a variety of ways, but it 
is a good idea to use a hierarchical algorithm, where the 
first step evaluates the state of the tool on the basis of 
single or few measures and these measures are 
integrated in the second one. 
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