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Described is the determination of random 
distributions of the fatigue crack length by the Monte 
Carlo method and the Bogdanov-Kozin model. Input 
data needed to determine the distributor were 
obtained by simulation of fatigue crack growth using 
the Paris-Erdogan model. 
KEYWORDS: fatigue, probabilistic models, 
Bogdanov-Kozin model, Paris-Erdogan model, Monte 
Carlo method 
 

On 3 June 1998, in German Eschede, train running at 
a speed of over 200 km/h hit the railway viaduct, which 
then collapsed on one of the wagons. 101 people were 
killed, 105 were injured. This was the most serious high 
speed train accident ever and was caused directly by the 
derailment composition on a traveling track due to 
damage to the wheel rim due to the fatigue [12]. 

Fatigue is the most common construction materials 
cause damage to machine components [1]. Critical 
damage to the machine elements usually appear 
suddenly and unexpectedly. The primary reason for this 
is the complicated nature of the processes of fatigue and 
the fact that in the initial phase of the fatigue, processes 
occurring in the machine elements are difficult to see. 

Fatigue processes are the result of the weave of many 
complex phenomena characterized by large random 
scattering which is difficult to describe in a deterministic 
way. Therefore, to describe the fatigue processes are 
increasingly being used probabilistic models. Fatigue life 
is determined on the basis of generally expensive and 
time-consuming research. They are carried out on 
finished components, after the design process. Due to 
these disadvantages, it is advisable to look for methods 
that can help determine the fatigue life of the element at 
the design stage. In many cases, physical fatigue tests 
can be replaced by appropriately constructed a 
mathematical model. But such models are characterized 
by high computational complexity, which is why 
computers are recommended for calculations. 
Development of numerical methods for determining 
fatigue life seems to be a perspective direction of 
scientific research. 

 
 

The fatigue process can usually be divided into three 
stages. In the first stage, local plastic deformations occur 
and local strengthening and weakening of the element 
occurs along with them. In the second stage generates 
micro-cracks, which number increases with the number 
of load cycles. On the third and last step is the 
development and linking of micro, thereby macro-cracks 
arise leading to the complete destruction of the item. 
Cracks occur mainly on the surface or in the top layer, 
but all kinds of defects from the manufacturing process 
can cause cracking on both the surface and subsurface 
layers. The effect of fatigue processes is complete 
rupture, also called a breakthrough fatigue. Fatigue 
breakthrough is the result of the development of surface 
and subsurface foci perpendicular to the direction of 
elongation. 

The expansion of the fatigue slit can be described by 
the general equation of fatigue cracking: 
 

 

 
where: a – current fatigue crack length, N – number of 
load cycles (or time) corresponding to the crack length, S 
– stress in the material resulting from variable loads, C – 
material properties in general, θ – temperature, ζ – other 
factors impact on the growth gap fatigue. 

 
Typically, formulas describing the increase of fatigue 

cracks are obtained experimentally. The most famous 
and most popular is the Paris-Erdogan equation: 
 

 

 
where: C, m – material constants, ΔK – stress intensity 
factor range. 

 
The fundamental problem in this equation is 

determination of material parameters C, m. They depend 
on many factors such as physical and geometrical 
properties of the material, the temperature, the frequency 
and the range of stresses. They must therefore be 
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designated separately for each case under 
consideration. In contrast, the stress intensity range ΔK 
is usually determined by numerical methods, mainly by 
the finite element method [2]. 

 
Determination of random distribution of fatigue crack 
length by Monte Carlo method 

 
Input data were obtained from the simulation of fatigue 

crack growth simulations using the Paris-Erdogan model. 
The result of the simulation was a bundle of curves 
showing the increase in fatigue crack length depending 
on the number of load cycles. Subsequent curves in the 
beam were generated by stepwise changing the value of 
parameter C from the Paris-Erdogan equation. 
 

 

Fig. 1. Pattern of the fatigue crack growth curve obtained using the 
Paris-Erdogan model 
 

 

Fig. 2. Pattern of the fatigue crack growth curve obtained from the 
Paris-Erdogan model by the Monte Carlo method 
 

 

Fig. 3. Pattern of the fatigue crack distribution curve obtained by 
Monte Carlo method and Bogdanov-Kozin model 

 
The generated beam contained 1000 curves. The 

graph (fig. 1) shows all generated curves for a single 
data set. After statistical analysis, it was found that the 
random variables associated with the cracks lengths 
obtained from the Paris-Erdogan model are exponential 
distributions and logarithmic distribution is to be reported 
according to literature [9]. Therefore, in order to obtain 

the correct distribution of random variables, a Monte 
Carlo-based algorithm was chosen, which selects the 
appropriate curves from the input beam in such a way 
that the distributions of the random variables assigned to 
the crack length data have logarithmic-normal 
distributions. This algorithm also takes into account that 
these distributions in the case of an input beam are 
exponential. Fig. 2 shows the result of the developed 
algorithm. To maintain the readability of the graph, only 
50 curves were selected. While the algorithm itself in 
normal operation of the input curve 1000, selects 200. 
The selected number of curves was determined by 
analysis of the histogram obtained by the Monte Carlo 
simulation. 

Based on the input curves, the fatigue gap length 
distribution was also generated using the Bogdanov-
Kozin model. This model is described more fully in [4–8, 
10]. The obtained distributions for the three crack 
lengths: 1 mm, 2 mm and 3 mm are shown in fig. 3. The 
Bogdanov-Kozin distribution models were presented 
using smooth curves, and those derived from the Monte 
Carlo method – using stepped curves. 

 
Conclusions 
 

Fatigue crack lengths obtained using the Bogdanov-
Kozin model and the Monte Carlo method are highly 
compatible. The main drawback of the Monte Carlo 
method is high demand for computing power. Bogdanov-
Kozin model is characterized by lower demand for 
computer power and the resulting distribution well 
describes the distributions of random variables on the 
individual lengths of cracks. In addition to the Monte 
Carlo method and the Bogdanov-Kozin model, Weibull 
distribution was used to generate the distribution. (to 
keep the graph clear, it was not shown in fig. 3). The 
algorithm presented was included in the software 
described in [8, 11]. This software will be further 
developed. 
 

 
REFERENCES 
 
1. Kocańda S., Szala J. „Podstawy obliczeń zmęczeniowych”. 
Warszawa: PWN, 1985. 
2. Sobczyk K., Spencer B.F. „Stochastyczne modele zmęczenia 
materiałów”. Warszawa: WNT, 1992. 
3. Benjamin J.R., Cornell C.A. „Rachunek prawdopodobieństwa, 
statystyka matematyczna i teoria decyzji dla inżynierów”. 
Warszawa: WNT, 1977. 
4. Bogdanoff J.L., Kozin F. “Probabilistic models of Cumulative 
Damage”. New York: John Wiley & Sons, 1985. 
5. Bogdanoff J.L., Kozin F. “Probabilistic models of fatigue crack 
growth II”. Engineering Fracture Mechanics. 20 (1984). 
6. Bogdanoff J.L., Kozin F. “Probabilistic models of fatigue crack 
growth: results and speculations”. Nuclear Engineering and Design. 
115 (1989). 
7. Drewniak J. „Probabilistyczny model obliczeniowy trwałości 
zmęczeniowej elementów i zespołów maszyn”. Bielsko-Biała: 
Wydawnictwo Filii PŁ, 1992. 
8. Drewniak J., Hojdys L. „Komputerowe wspomaganie analizy 
trwałości zmęczeniowej walcowych kół zębatych”. Mechanik. 7, 
2015. 
9. Virkler D.A. i in. “The statistical nature of fatigue crack 
propagation”. AFFDL-TR-78-43, 1978. 
10. Kozin F., Bogdanoff J. “On probabilistic modelling of fatigue 
fatigue crack growth”. Engineering Fracture Mechanics. 18 (1983). 
11. Drewniak J., Hojdys L. „Oprogramowanie do numerycznej 
analizy wzrostu pęknięcia zmęczeniowego za pomocą modeli 
Markowskich i semi-Markowskich”. Mechanik. 7 (2016). 
12. Bogdanowicz A. “10. rocznica katastrofy w Eschede”. Rynek 
Kolejowy. 6 (2008).                  ■ 


