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Determination of distributions of fatigue crack length

by Monte Carlo method
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Described is the determination of random
distributions of the fatigue crack length by the Monte
Carlo method and the Bogdanov-Kozin model. Input
data needed to determine the distributor were
obtained by simulation of fatigue crack growth using
the Paris-Erdogan model.
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On 3 June 1998, in German Eschede, train running at
a speed of over 200 km/h hit the railway viaduct, which
then collapsed on one of the wagons. 101 people were
killed, 105 were injured. This was the most serious high
speed train accident ever and was caused directly by the
derailment composition on a traveling track due to
damage to the wheel rim due to the fatigue [12].

Fatigue is the most common construction materials
cause damage to machine components [1]. Critical
damage to the machine elements usually appear
suddenly and unexpectedly. The primary reason for this
is the complicated nature of the processes of fatigue and
the fact that in the initial phase of the fatigue, processes
occurring in the machine elements are difficult to see.

Fatigue processes are the result of the weave of many
complex phenomena characterized by large random
scattering which is difficult to describe in a deterministic
way. Therefore, to describe the fatigue processes are
increasingly being used probabilistic models. Fatigue life
is determined on the basis of generally expensive and
time-consuming research. They are carried out on
finished components, after the design process. Due to
these disadvantages, it is advisable to look for methods
that can help determine the fatigue life of the element at
the design stage. In many cases, physical fatigue tests
can be replaced by appropriately constructed a
mathematical model. But such models are characterized
by high computational complexity, which is why
computers are recommended for calculations.
Development of numerical methods for determining
fatigue life seems to be a perspective direction of
scientific research.
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The fatigue process can usually be divided into three
stages. In the first stage, local plastic deformations occur
and local strengthening and weakening of the element
occurs along with them. In the second stage generates
micro-cracks, which number increases with the number
of load cycles. On the third and last step is the
development and linking of micro, thereby macro-cracks
arise leading to the complete destruction of the item.
Cracks occur mainly on the surface or in the top layer,
but all kinds of defects from the manufacturing process
can cause cracking on both the surface and subsurface
layers. The effect of fatigue processes is complete
rupture, also called a breakthrough fatigue. Fatigue
breakthrough is the result of the development of surface
and subsurface foci perpendicular to the direction of
elongation.

The expansion of the fatigue slit can be described by
the general equation of fatigue cracking:

da
m:F(a,S,C,H,é’) (1)

where: a — current fatigue crack length, N — number of
load cycles (or time) corresponding to the crack length, S
— stress in the material resulting from variable loads, C —
material properties in general, 8 — temperature, { — other
factors impact on the growth gap fatigue.

Typically, formulas describing the increase of fatigue
cracks are obtained experimentally. The most famous
and most popular is the Paris-Erdogan equation:

da
b (AR 2
AN (AK) (2)

where: C, m — material constants, AK — stress intensity
factor range.

The fundamental problem in this equation is
determination of material parameters C, m. They depend
on many factors such as physical and geometrical
properties of the material, the temperature, the frequency
and the range of stresses. They must therefore be
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designated separately for each case under
consideration. In contrast, the stress intensity range AK
is usually determined by numerical methods, mainly by
the finite element method [2].

Determination of random distribution of fatigue crack
length by Monte Carlo method

Input data were obtained from the simulation of fatigue
crack growth simulations using the Paris-Erdogan model.
The result of the simulation was a bundle of curves
showing the increase in fatigue crack length depending
on the number of load cycles. Subsequent curves in the
beam were generated by stepwise changing the value of
parameter C from the Paris-Erdogan equation.
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Fig. 1. Pattern of the fatigue crack growth curve obtained using the
Paris-Erdogan model
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Fig. 2. Pattern of the fatigue crack growth curve obtained from the
Paris-Erdogan model by the Monte Carlo method
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Fig. 3. Pattern of the fatigue crack distribution curve obtained by
Monte Carlo method and Bogdanov-Kozin model

The generated beam contained 1000 curves. The
graph (fig. 1) shows all generated curves for a single
data set. After statistical analysis, it was found that the
random variables associated with the cracks lengths
obtained from the Paris-Erdogan model are exponential
distributions and logarithmic distribution is to be reported
according to literature [9]. Therefore, in order to obtain

the correct distribution of random variables, a Monte
Carlo-based algorithm was chosen, which selects the
appropriate curves from the input beam in such a way
that the distributions of the random variables assigned to
the crack length data have logarithmic-normal
distributions. This algorithm also takes into account that
these distributions in the case of an input beam are
exponential. Fig. 2 shows the result of the developed
algorithm. To maintain the readability of the graph, only
50 curves were selected. While the algorithm itself in
normal operation of the input curve 1000, selects 200.
The selected number of curves was determined by
analysis of the histogram obtained by the Monte Carlo
simulation.

Based on the input curves, the fatigue gap length
distribution was also generated using the Bogdanov-
Kozin model. This model is described more fully in [4-8,
10]. The obtained distributions for the three crack
lengths: 1 mm, 2 mm and 3 mm are shown in fig. 3. The
Bogdanov-Kozin distribution models were presented
using smooth curves, and those derived from the Monte
Carlo method — using stepped curves.

Conclusions

Fatigue crack lengths obtained using the Bogdanov-
Kozin model and the Monte Carlo method are highly
compatible. The main drawback of the Monte Carlo
method is high demand for computing power. Bogdanov-
Kozin model is characterized by lower demand for
computer power and the resulting distribution well
describes the distributions of random variables on the
individual lengths of cracks. In addition to the Monte
Carlo method and the Bogdanov-Kozin model, Weibull
distribution was used to generate the distribution. (to
keep the graph clear, it was not shown in fig. 3). The
algorithm presented was included in the software
described in [8, 11]. This software will be further
developed.
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