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The paper presents analysis of results obtained by 
application of two-stage method of calculation of the 
statically indeterminate systems for selected type of 
plane trusses loaded in nonsymmetrical way. At 
each stage of this method are calculated values of 
forces acting in members of the statically 
determinate trusses, schemes of which are 
determined by suitable reduction of number of 
members, which number is equal to statically 
indeterminacy of the basic truss. In particular stages 
the outer load forces are of half values of load of the 
basic truss and they are applied to suitable nodes of 
the intermediate trusses. Geometric parameters 
referring to the clear span and construction depth of 
the considered trusses are in each stage the same 
like in the basic truss. Final values of forces 
calculated in the statically indeterminate truss are 
resultants of forces determined at each stage for 
appropriate members of statically determinate 
trusses. 
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The two-stage method of calculation statically 
indeterminate trusses was created during the initial static 
analysis of complex tension-strut structures [1]. It uses 
the simple principle of superposition, which states that 
the result of a given force can be defined as the sum of 
the effects of the component forces [2-5]. The inspiration 
for the emergence of the two-stage method was the 
images of the deformation of the flat forms of tension-
strut structures, which were statically indeterminate 
systems whose top and bottom chords were made with 
tension members. If the initial pre-stressing is insufficient 
and the load forces are too big, the tension members 
located e.g. in the top chord do not participate in the 
transmission of forces to the support points. The number 
of inactive members in this case is equal to the degree of 
static indeterminacy consistency of the primary truss. 
This observation has led to the following question: can  
the statically indeterminate truss be calculated in two 
stages, using one of the methods applied to calculate the 
statically determinate trusses, calculating at each stage 
separately a triangular truss with the appropriate static 
scheme? The answer to this question is a two-stage 
method that uses the superposition principle in its 
procedure [6]. The correctness of accepted assumptions 
was checked by using this method of calculating the 
trusses and comparing the results with the results 
obtained by using appropriate computer software. 
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was checked by using this method of calculating the 
trusses and comparing the results with the results 
obtained by using appropriate computer software. 
 
General scheme of the calculation process 

 
In these calculations, flat trusses, consisting of square 

modules separated by vertical struts, were considered. In 
this work, a similar truss is statistically indeterminate 
system, but has a central horizontal chord located at half 
its height (fig. 1a). It is a truss made of 16 nodes (w = 16) 
and 33 members (p = 33). 

 
The internally statically determinate truss must meet 

the following condition: 

 

This means that for the number of nodes w = 16, the 
maximum number of members forming the truss is: 

 

 

The truss of the diagram shown in fig. 1a is 
constructed of 33 members and is therefore a four-fold 
statically indeterminate system. To make it statically 
determinate truss, four appropriate members must be 
removed.  

It was decided that the four horizontal members of the 
top chord would be removed in the first stage and the 
loading forces, equal to half of the load values of the 
base truss, would be applied to the same top chord 
nodes as in the primary truss (fig. 1b). At the second 
stage, four bottom chord members will be removed, and 
the load-balancing halves will be applied to the bottom 
chord nodes lying on the respective force lines in the 
primary truss (fig. 1c). Their positions along these lines 
are justify by the rules of the calculus of vectors and the 
feature of forces as linear vectors.  

In addition, the proposed procedure results directly 
from the three basic equilibrium conditions for any 
coplanar force system: 

 

These three necessary equilibrium conditions 
sufficiently justify the desirability of applying the 
superposition principle in the two-stage method of 
calculation of statically indeterminate trusses. 
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Fig. 1. Diagram of procedure in two-stage method of calculation plane statically indeterminate trusses together with illustrative 
analogy to bending beams 
 

 

Fig. 2. The values of the forces in members, calculated at the first stage of calculations performed by two-stage method 
 

 

Fig. 3. The values of the forces in members, obtained at the second stage of calculations performed by two-stage method 
 

 
Calculating the truss loaded in asymmetric way 

 
This section presents the results of the two-stage 

computation, which were compared to the results 
obtained for the same truss but loaded in the asymmetric 
way, with the identical force values. The geometry of the 
members of the considered truss is identical to that 
shown in fig. 1a, but it is unbalanced with only three 
forces applied to three nodes of the top chord located to 
the right of the truss in the vicinity of the support B (fig. 
2). The clear span of the examined truss is 5.00 m and 
its construction depth is 1.00 m. The truss is loaded with 
three forces, each of which has a value of 1.00 kN.  

 
 

Following the two-stage procedure, the first chord was 
removed and the concentrated forces, each of value 
equal to 0.50 kN, were applied at the first stage to the 
previously indicated top chord nodes. Calculations were 
made using the Cremona’s method, and the values of 
the forces obtained for each of the members were shown 
(along with the complete Cremona’s polygon of forces) 
on the truss pattern (fig. 2). At the second stage, also 
four members were removed, but this time from the 
bottom chord, and the forces of 0.50 kN were applied to 
the corresponding nodes of the chord. As before, the 
calculation process was carried out using the Cremona’s 
method, and its results are illustrated in fig. 3. 
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Using rules of calculus of vectors, the forces in 
members of the examined base truss are determined 
successively, which are the calculated forces at each 
stage for the members located between the nodes with 
the same ordinal numbers. Since the first stage removes, 
for example, the member between the nodes of the top 
chord, numbers 3 and 4 (fig. 2), therefore the value of the 
force acting there is zero. At the second stage, this strut 
is present between nodes 3 and 4 (fig. 3), and the 
calculated compressive force acting therein is -2.20 kN. 
Therefore, the resulting force value in this member of the 
considered triangular statically non-determinable is -2.20 
kN. 

Values of forces acting on all truss members, 
calculated by two-stage method, are shown in fig. 4a. For 
an exemplary cross brace between 4 and 8 nodes, the 
value of the compressive force acting on it, calculated at 
the first stage, is -0.335 kN (fig. 2), while the force 
determined in the same rod at the second calculation 
stage is a tensile force 0.424 kN (fig. 3). The resulting 
value of the force acting in this member calculated by the 
two-stage method is therefore approximately 0.07 kN 
(fig. 4a), which means that there is a small tensile force 
therein. 

 

 

Fig. 4. Values of forces in the members of the tested primary 
truss calculated: a) by two-stage method, b) by means of a 
computer program 

 

It should be noted that the method does not take into 
account the stiffness of the members joining the truss 
nodes. From the preliminary analysis of the obtained 
force values, it follows that the general arrangement of 
forces, in particular as regards their nature, is in line with 
the predictions, also concerning the variance of the 
forces present in the area of the considered truss 
system. 

In order to verify the received values of forces, a truss 
with the same static pattern (fig. 4b) was calculated in 
the Autodesk Robot Structural Analysis Professional 
2016 computer software, also taking into account the 
different rigidity of the individual elements in the 
connecting nodes. 

The tested truss also had a clear span of 5.00 m and 
a construction depth of 1.00 m and was loaded and 
supported in the same way as the primary truss. It was 
assumed that the truss was constructed of tubular steel 
members with Young's modulus E = 210 GPa, a circular 

cross-sectional diameter of ⌀30.00 mm and a wall 

thickness of 4.00 mm. The force values obtained by this 
path and their distribution in the space of the calculated 
truss are shown in fig. 4b. 

On the basis of the comparison of the results obtained 
by two methods, it can be stated that in the areas of the 
trusses there is full consistency of the results, and in 
other regions the values of forces calculated for the 
same rods differ considerably. The calculated forces 
acting in the top and bottom chords are identical 
regardless of the method used. Thus, the value of the 
force acting e.g. in the member between the nodes 3 and 
4 calculated by the computer method (fig. 4b) is -2.20 kN 
and is identical to the value of the force acting in the 
same bar, calculated by the two-stage method (fig. 4a). 
Significant differences also apply to the size of the forces 
acting in the cross braces. The value of the force defined 
by the two-stage method in the member between nodes 
4 and 8 is 0.07 kN (fig. 4a), which means that it is a 
tensile force. In turn, the force acting in the same cross 
brace of truss, calculated by means of a computer 
program, is -0.28 kN and therefore is a compressive 
force. Similarly, large differences in the force values were 
observed in the members forming the central chord 
running between the support nodes A and B, that is, as 
before in the region of occurrence of forces with very 
small values or equal to zero. 

 
Conclusions 
 

Values of forces obtained in the Autodesk Robot 
Structural Analysis Professional 2016 computer program 
are accurate, because the program uses complex 
computational routines suitable for statically 
indeterminate systems. The two-stage method is an 
approximation, but the accuracy of its results may 
increase significantly in the future by using the 
appropriate coefficients determined individually for each 
node and taking into account the different stiffness of the 
members joining in that node.  
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