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During the final stage of designing a pinion which is 
exploited at different rotational speeds, it is 
occasionally necessary to offset natural frequencies 
from frequencies of excitations. The way of solving 
this problem by means of parametric optimization of 
the pinion profile, assuming small changes of its 
shape, is discussed in the paper. The problem is 
solved using finite element model with regard to 
monolithic pinion of an aircraft gear.  
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In high-speed flight gear, pinions are often made as 

monolithic, and due to the need to reduce their own 
weight their shafts are hollow. When designing the pinion 
based on the results of the verification calculations, the 
tooth parameters are determined and the shape and 
dimensions of the envelope and shaft, taking into 
account safety and durability criteria as well as structural 
considerations. Compliance with these requirements 
sometimes results in the design of a pinion whose 
natural vibration frequencies fall within the range of the 
excitation frequencies resulting from the rotational speed 
ranges occurring during the transmission operation - are 
in the resonant areas. This applies particularly to the 
gear that operates at different operating speeds, e.g. air 
gears. 

Since the pinion meets the requirements for safety 
and durability and structural considerations, the question 
arises how to change the natural frequencies that lie in 
the resonant areas, or, in other words, how to offset 
some of the natural frequencies from the excitation 
frequencies. The solution to this problem inevitably leads 
to changes in the shape and dimensions of the toothed 
wheel, whose design is already at an advanced stage, 
such a solution is being looked for that minimally 
changes the design of the wheel. In practice, it points to 
those parts of the gear, which modification does not 
affect the already fulfilled the requirements of security 
and stability and accepted design considerations. 
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Modal analysis of the air gear pinion 
 
Pinion MES model. As a result of the modal analysis 

of the aerial pinion gear, we obtain a set of frequencies 
and forms of free (floating) vibration called the modal 
model. Such analysis was carried out using the finite 
element method in NX 9 Nastran [2]. Fig. 1 shows the 
pinion MES model (in view of the manufacturer's 
protection of the toothed wheel). Pinion modeled using 
eight-node, solid elements of the hexagonal type 
CHEXA8 (fig. 1a) and the support roller in rolling - by 
means of the type RBE3 nodes independent on the 
periphery of the opening roller in the plane of the rolling 
elements of the bearing and the hub dependent on the 
symmetry axis of the shaft (fig. 1b). At points where left 
and right bearings are located, pairs of coincident nodes 
are created that are joined by CELAS1 zero-dimensional 
elements of three translation strokes (X, Y and Z 
directions) and one rotational stiffness (around the X 
axis). Numerical values of stiffness were assumed to be 
large enough (1 • 1010 N/mm and 1 • 1010 N•mm, 
respectively) to be considered rigid compared to the 
shaft. Then one of the nodes elements CELAS1 received 
all degrees of freedom. This way of supporting well 
reproduces the actual working conditions of the pinion 
and eliminates over-rigidness of the FEM model. 

 

 

Fig. 1. MES model of the air gear pinion (a) and the bearing 
support model (b) 

 
The developed MES pinion model has 46 095 degrees 

of freedom. As a result of the modal analysis of the 
pinion MES model, we obtained a set of 
eigenfrequencies and eigenforms of free vibration. The 
values of a few of the first natural frequencies, important 
due to the possibility of resonance, are summarized in 
are shown in fig. 2. The custom frequencies are 
determined according to the convention ωi

k, where i is 
the ordinal number, and k is the number of nodal 
diameters around which the movement of rim of toothed 
wheel during vibration is taking place. It can be seen that 
the frequency pairs ω1

0 and ω2
0, ω4

1 and ω5
1 as well as 
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ω7
2 and ω8

2 are the same frequencies with their 
corresponding same phase shifted ones. What is 
important for further analysis, in the pairs ω4

1 and ω5
1 

along with ω7
2 and ω8

2, the phase shift causes rotation of 
the oscillation of the toothed wheel around the pinion 
rotation axis. 

 

 

Fig. 2. Forms and frequencies of own vibrations 

 
 

Campbell chart. In the engineering practice, the 

Campbell graph [1] is used to compare the results of the 
modal analysis of the rotor pinion - rotor - with its 
rotational velocity. Ordinate designates own frequency 
ωi

k (in Hz), and the abscissa - the turnover excitations n 
(in rev/min). Analyzed pinion is operated at revolutions 
corresponding to the following operating conditions of the 
air gear: 
● minimum revolutions: nmin = 5500 rpm, 
● flight: np = 8500 rpm, 
● climb: nw = 9500 rpm, 
● maximum speed: nmax = 11,000 rpm, 
● speed limit (105% nmax): ngr = 11,500 rpm. 

Campbell's graph is shown in fig. 3. It also shows the 
pinion rotation (incrementally 0 to ngr in Hz) and the 
engagement line (for 35 teeth of the wheel, increasing 
from 0 to 35 ngr in Hz). The lines on the graph 
corresponding to the frequencies ω4

1 and ω7
2 do not run 

horizontally, but are straight pairs that are slightly 
inclined at a slight angle. This is caused by the rotation of 
the pinion around its axis. The movement of the wheel 
rim relative to the diameter of the junction due to 
vibration affects the movement of lifting - rotation of the 
pinion. Depending on whether these movements are 
consistent, whether they are opposite in phase, followed 
by respectively increasing or decreasing the frequency of 
their own. This phenomenon can be observed on the 
basis of the result of modal analysis. If different phase-
shifted eingenforms, for which one can indicate nodal 
diameters, correspond to the same frequency of free 
vibrations of the toothed wheel (rpm), we are dealing with 
the change of natural frequency caused by rotations of 
the wheel (this effect is also called a centrifugal stiffening 
effect). Then in Campbell's graph, such self-frequency is 
represented by two straight lines from one point with the 
equations: 

 

 
Parametric optimization of the pinion shape - resonance frequency tuning 

 
 

 

Fig. 3 Campbell Diagram for Pinion 
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Diagram (fig. 3) illustrates two points (marked with 

squares □1 and □2), where there is potential risk of 
resonance. The lower straight resonance frequency ω7

2 
crosses the straight line from the gearing at point 1, while 
the straight line resonance frequency ω6

0 is at point 2. 
The point 1 lies in the resonance area for the climb and 
point 2 for the flight. Since the resonance frequency 
tuning should be performed with as little interference as 
possible in the pinion envelope shape, the task was 
solved using the NX Optimizer for parametric 
optimization. Due to axial symmetry as parameters - 
decision variables - values were defined defining the 
profile in the radial section of the pinion. Fig. 4 shows the 
parameters that will be changed during optimization (p51 
= x1, p52 = x2, p53 = x3, p82 = x4, p55 = x5), and their 
initial values (in mm). In order to preserve the integrity of 
the profile, the appropriate binding is marked with the 
symbol O: O1 is a fixed point, O2 is the symmetry of the 
point along the axis 6, O3 and O4 - the tangent of the 
curve and the symmetry of the axis 6, and O5 is the 
tangent of the arc and its horizontal extension. 

 

Fig. 4. Profile parameterization 

 
Since the eigenform for eigenfrequencies ω4

1, ω6
0 and 

ω7
2 correspond to the deformation of the toothed wheel 

rim and are conjugated together, the following 
optimization task has been formulated: 

 

with constraints: 
● 5540 ≤ ω7

2 ≤ 5550 Hz, □1 (fig. 3) halfway between the 
flight and climb turns, 

● ω6
0 ≤ 4700 Hz, □2 (fig. 3) sufficiently offset from the 

rotation of the flight. 
The optimal solution for the task (2) is the profile 

parameters (fig. 4) with the following values (the 
percentages of the initial values after optimization are in 
parentheses): 
● p51 = x1 = 5.34 mm (-4.6%), p52 = x2 = 5.76 mm (-

10%), 
● p53 = x3 = 2.61 mm (-10%), p83 = x4 = 0.98 mm (-2%), 
● p55 = x5 = 5.78 mm (+ 7%). 

Fig. 5 compares the shape of the profile before and 
after optimization. Changes to the profile (pinion sheath) 
after optimization did not violate safety criteria and also 
meet all design requirements. 

 

 

Fig. 5. Profiles before optimization and after optimization 

 
Pinion with the optimum profile dimensions has the 

following own frequencies (parentheses are given in the 
parentheses in Hz relative to the value in fig. 2, which 
was obtained from the modal analysis of the pinion 
before optimization): 
● ω1

0 = 2839 Hz (+23), ω3
0 = 3613 Hz (+3), 

● ω4
1 = 3595 Hz (-339), ω6

0 = 4688 Hz (-375), 
● ω7

2 = 5551 Hz (-196) 
By applying these values to the Campbell graph (fig. 

3), it can be verified that none of the own pinion 
frequencies after the optimization is in the resonance 
area for any of the induction frequencies. 

 
Conclusions 
 

The problem described in the paper makes it possible 
to draw the following general conclusions: 
● If the project is in the final stages of development and 

still does not meet the requirements, then you should 
look for parameters that change in the specified 
(usually small) scope will meet all requirements of the 
project. 

● The most likely solution to the problem of a slight 
change in the shape of the part at the end of its design 
process is to provide free surfaces that are not 
dimensioned with fit and tolerance. 

● A good method of searching for the altered shape of 
free surfaces in the final phase of the project is the 
parameterization of the profile (profile) of the part, 
followed by the formulation and solution of the task of 
optimal selection of the parameters of the contour due 
to the accepted criterion. 

● Modern computer-aided design software provides 
powerful tools for parametric optimization of the MES 
model. 
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