Dokładność i chropowatość powierzchni po pięcioosiowym szlifowaniu ściernicą kulistą

Surface accuracy and roughness parameters in free form grinding with the use of an spherical diamond head

JAN BUREK ARTUR SZAJNA JOANNA LISOWICZ TOMASZ RYDZAK*

Przedstawiono wyniki badań doświadczalnych pięcioosiowego szlifowania kulistą ściernicą trzpieniową wypukło-wklęsłej powierzchni wykonanej z ceramiki korundowej. Pokazano wpływ posuwu i głębokości skrawania na parametry chropowatości *Ra* i *Rz* oraz dokładność odwzorowania powierzchni. SŁOWA KLUCZOWE: szlifowanie, ceramika korundowa, dokładność odwzorowania powierzchni, diamentowa trzpieniowa ściernica kulista

The article presents the results of experimental research for free form grinding of corundum ceramic with the use of an **spherical diamond head.** Article shows the influence of cutting depth and feed on roughness parameters and surface accuracy.

KEYWORDS: grinding, corundum ceramics, surface accuracy reproduction, spherical head diamond mounted points grinding tool

Ze względu na właściwości materiałów ceramicznych ich obróbka ścierna jest technologicznie trudna. Dotyczy to zwłaszcza szlifowania powierzchni złożonych, w których obróbce stosuje się najczęściej ściernice trzpieniowe z nasypem diamentowym [1–3]. Taki proces wymaga zastosowania wieloosiowych szlifierek wyposażonych w wysokoobrotowe wrzeciona i precyzyjne układy pozycjonowania osi – tylko pod tym warunkiem możliwe jest szlifowanie elementów o skomplikowanych kształtach wykonanych z materiałów ceramicznych lub supertwardych [4].

Materiały ceramiczne są szeroko stosowane w technice, a także w inżynierii medycznej – zwłaszcza korund i cyrkon wykorzystuje się na implanty kostne i zębowe [4, 5]. Takie elementy wykonuje się z użyciem narzędzi o małych rozmiarach, co powoduje, że prędkość skrawania v_c musi się mieścić w przedziale 5÷10 m/s (w przypadku szlifowania konwencjonalnymi ściernicami wynosi ona 30÷45 m/s). Przykładowo: aby prędkość skrawania w przypadku ściernicy o średnicy $d_s = 5$ mm osiągnęła 10 m/s, prędkość obrotowa wrzeciona obrabiarki powinna wynosić co najmniej $n_s = 40~000$ obr/min.

Poza tym w szlifowaniu trzpieniowymi ściernicami kulistymi ważne jest odpowiednie ustawienie osi trzpienia ściernicy względem obrabianej powierzchni – tak aby uzyskać wymaganą efektywną prędkość skrawania (rys. 1).

W zależności od kątów wyprzedzenia α i pochylenia β minimalna i maksymalna efektywna prędkość skrawania przyjmuje różne wartości. DOI: https://doi.org/10.17814/mechanik.2017.8-9.110

Rys. 1. Ustawienie osi trzpienia ściernicy (a_p – głębokość szlifowania, a_e – szerokość szlifowania, α – kąt wyprzedzenia, β – kąt pochylenia, n_s – prędkość obrotowa ściernicy)

Jeżeli α = 0° i β = 0° (oś wrzeciona prostopadła do powierzchni), wtedy prędkości skrawania przyjmują wartości:

$$v_{\rm cmin} = \frac{\pi \cdot n_{\rm s} \cdot 2 \cdot \sqrt{\left(\frac{1}{2}d_{\rm s}\right)^2 - \left(\frac{1}{2}d_{\rm s} - a_{\rm p}\right)^2}}{60\ 000} \left[{\rm m/s} \right]$$
$$v_{\rm cmax} = \frac{\pi \cdot n_{\rm s} \cdot d_{\rm s}}{60\ 000} \left[{\rm m/s} \right]$$

gdzie: a_p oznacza głębokość szlifowania.

Jeśli natomiast jeden z kątów (α lub β) jest różny od zera, prędkości skrawania są określone równaniami:

$$v_{c \min} = \frac{\pi \cdot d_{s \min} \cdot n_{s}}{60\ 000} \, [m/s]$$
$$v_{c \max} = \frac{\pi \cdot d_{s \max} \cdot n_{s}}{60\ 000} \, [m/s]$$

adzie

e:

$$d_{s\min} = d_s \cdot \sin\left(\beta - \arccos\left(\frac{\frac{1}{2}d_s - R_{th}}{\frac{1}{2}d_s}\right)\right) [mm]$$

$$d_{s\max} = d_s \cdot \sin\left(\beta + \arccos\left(\frac{\frac{1}{2}d_s - a_p}{\frac{1}{2}d_s}\right)\right) [mm]$$

natomiast $R_{\rm th}$ jest teoretyczną wysokością chropowatości (rys. 2).

Rys. 2. Określenie maksymalnej chropowatości teoretycznej Rth [4]

^{*} Dr hab. inż. Jan Burek prof. PRz (jburek@prz.edu.pl), mgr inż. Artur Szajna (a.szajna@prz.edu.pl), mgr inż. Joanna Lisowicz (j.lisowicz@prz. edu.pl), mgr inż. Tomasz Rydzak (t.rydzak@prz.edu.pl) – Katedra Technik Wytwarzania i Automatyzacji, Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej

Stanowisko badawcze i przebieg badań

Próby szlifowania zrealizowano na pięcioosiowym centrum obróbkowym Ultrasonic 20 linear firmy Sauer (rys. 3), wyposażonym w układ sterowania Sinumerik 840D. Do obróbki zastosowano diamentowe trzpieniowe ściernice kuliste firmy Dremel (7105), powlekane galwanicznie, o średnicy $d_s = 4,4$ mm. Materiałem obrabianym była wstępnie spieczona ceramika korundowa o zawartości Al₂O₃ powyżej 98%.

Rys. 3. Stanowisko badawcze: 1 – obrabiarka, 2 – przestrzeń robocza z zamocowaną próbką, 3 – ściernica Dremel 7105

Do badań przygotowano dwie identyczne próbki, których powierzchnie podzielono na trzy strefy o szerokości 10 mm (rys. 4). Dla każdej strefy przyjęto inną wartość naddatku na szlifowanie (tablica). Do obróbki każdej z próbek wykorzystywano nową ściernicę.

Rys. 4. Strefy powierzchni obrabianej

TABLICA. Wartości naddatków na szlifowanie w poszczególnych strefach próbki

Numer strefy	I	Ш	III
Wartość naddatku, µm	10	20	30

W procesie szlifowania stosowano następujące parametry:

- prędkość skrawania v_c = 5 m/s,
- kąt pochylenia osi trzpienia ściernicy β = 40°,
- głębokość skrawania a_p = 10 μm, 20 μm lub 30 μm zależnie od strefy obróbki,

• szerokość skrawania a_e zaprogramowaną tak, aby wartość parametru Rt chropowatości nie przekroczyła 1 µm.

Model powierzchni przeznaczonej do szlifowania oraz ścieżki obróbkowe wygenerowano za pomocą programu NX9.0. Prędkość posuwu v_t ustalono osobno dla każdej próbki (200 mm/min dla pierwszej i 400 mm/min dla drugiej).

Pomiary chropowatości i falistości powierzchni

Do pomiaru chropowatości obrabianych powierzchni wykorzystano profilograf MarSufr GD 120 firmy Mahr, wyposażony w głowicę pomiarową MFW-250:1 (#6851855). Wykonano pomiary parametrów *Ra* i *Rz* chropowatości powierzchni w kierunku ruchu posuwowego ściernicy i w kierunku prostopadłym do posuwu. Pomiar dokładności odwzorowania powierzchni przeprowadzono na konturografie Mahr XC 20. Podczas pomiaru porównano profil nominalny powierzchni z profilem uzyskanym po szlifowaniu z przyjętymi parametrami. Do pomiaru odchyłki profilu użyto końcówki PCV 350 × 58 mm 6033/1.

Wartości parametrów chropowatości Ra i Rz mierzone w dwóch wzajemnie prostopadłych kierunkach, uzyskane dla różnych prędkości posuwu v_1 , pokazano na rys. 5–8.

Rys. 5. Wartości parametru chropowatości *Ra* uzyskane podczas pomiaru w kierunku zgodnym z kierunkiem posuwu

Rys. 6. Wartości parametru chropowatości *Ra* uzyskane podczas pomiaru w kierunku prostopadłym do kierunku posuwu

Rys. 7. Wartości parametru chropowatości Rz uzyskane podczas pomiaru w kierunku zgodnym z kierunkiem posuwu

Rys. 8. Wartości parametru chropowatości Rz uzyskane podczas pomiaru w kierunku prostopadłym do kierunku posuwu

Z uzyskanych wyników pomiaru chropowatości powierzchni wynika, że parametr *Ra* mierzony w kierunku ruchu posuwowego zależy w większym stopniu od prędkości posuwowej niż od głębokości szlifowanej warstwy materiału. Co więcej, podczas szlifowania z głębokością skrawania *a*_p = 30 µm uzyskano najmniejszą wartość parametru *Ra*. Na kierunku przeciwnym do posuwu ściernicy parametr *Ra* zależy w mniejszym stopniu od prędkości posuwowej, mniej wyraźny jest również wpływ głębokości skrawania. W analogiczny sposób rozkładają się wartości parametru chropowatości *Rz*. Zarówno dla parametru *Ra*,

Rys. 9. Porównanie wartości odchyłek kształtu

Rys. 10. Rozkład odchyłek kształtu profilu rzeczywistego (kolor zielony) wyznaczony względem profilu nominalnego (kolor czerwony) dla posuwu 200 mm/min

Rys. 11. Rozkład odchyłek profilu rzeczywistego (kolor zielony) wyznaczony względem profilu nominalnego (kolor czerwony) dla posuwu 400 mm/min

jak i *Rz*, najlepsze wyniki uzyskano przy prędkości posuwowej v_t = 200 mm/min i głębokości skrawanej warstwy a_p = 30 µm.

Pomiary odchyłek kształtu wzdłuż zarysu mierzonej powierzchni próbki pokazano na rys. 9–11.

Z przedstawionych przebiegów odchyłek profilu wynika, że podczas szlifowania z mniejszą wartością prędkości posuwu w obszarze fragmentu powierzchni wklęsłej osiągnięto mniejszą odchyłkę niż dla posuwu o większej wartości. Analizując odchyłki kształtu uzyskane z porównania profilu nominalnego i profilu rzeczywistego powierzchni, zauważono, że dla wartości $a_p = 10 \ \mu m$ i $a_p = 20 \ \mu m$ mniejsze odchyłki kształtu profilu wystąpiły przy większej prędkości posuwu. W procesie szlifowania warstwy o grubości $a_p = 30 \ \mu m$ odchyłki kształtu były mniejsze dla posuwu 200 mm/min niż dla posuwu 400 mm/min.

Podsumowanie

Z przedstawionych analiz wynika, że dokładność odwzorowania powierzchni oraz jej chropowatość zależą od szeregu parametrów geometrycznych i technologicznych, zwłaszcza od prędkości posuwowej. W dalszych badaniach należałoby również przeanalizować wpływ kątów pochylenia osi trzpienia ściernicy.

LITERATURA

- Habrat W., Wdowik R., Porzycki J., Świder J. "Określenie granicznych wartości porowatości pozornej ceramiki korundowej i cyrkonowej w stanie białym dla potrzeb obróbki ściernicami z mikrokrystalicznego korundu spiekanego". *Mechanik.* 9 (2014): s. 143–146.
 Kriegesmann J. "Einteilung keramischer Werkstoffe". *Technische*
- Kriegesmann J. "Einteilung keramischer Werkstoffe". Technische Keramische Loseblattausgabe. Köln: Deutscher Wirtschaftsdienst, 2004, s. 1–20.
- Marinescu I.D. "Handbook of Advanced Ceramics Machining". CRC Press Taylor & Francis Group, 2007, s. 327–353.
- Schmidt Ch. "Koordinatenschleifen dentalkeramischer Werkstoffe mit kleinen Diamantwerkzeugen". Aachen: Shaker, 2008.
- Rodrigues A.C., Franco de Souza R.N., Galisa O.F., Franca T.V., Bianchi E.C., Foschini C.R. "Effect of grinding parameters on surface of advanced ceramics". *Matéria*. 21, 4 (2016): s. 1517.