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Advantages of Monte Carlo method are presented 
and compared with A and B type method of meas-
urement uncertainty evaluation. Problem of uncer-
tainty determination, in case of two or more domi-
nant components, is discussed. Results of experi-
ment to evaluate impact of probing strategy on 
measurement uncertainty of roundness deviation are 
presented. Issue of ‘systematic error’ in evaluation of 
coordinate measurement uncertainty is analyzed. 
KEYWORDS: measurement uncertainty, Monte Carlo 
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When estimating the measurement uncertainty, apart 
from methods of type A and B [1-3], the simulation 
technique, called Monte Carlo (MC) [4], is becoming 
more and more widely used. The analysis of the 
literature shows that it is the most commonly used alone. 
In the area related to the product geometry specification, 
for example, software for estimating the uncertainty of 
coordinate measurements is known [5]. 

The aim of this publication is to draw attention to the 
fact that the MC method can also be used to estimate 
individual components of measurement uncertainty and, 
above all, to analyze measurement uncertainty. 

The MC method is, by its nature, universal. It allows to 
determine the distribution of any function (not only the 
sum) of any number of random variables with arbitrary 
probability distributions. The direct result of the MC 
simulation is a significant number (in [4], there is even a 
million) resultant random variables, based on which it is 
possible (depending on the need) to determine the 
empirical distribution (histogram) or calculate any 
characteristics of the random variable as: average, 
standard deviation, higher order moments or quantiles. 

An important advantage of the MC method is 
intuitiveness, which will be shown in three examples: 
estimation of measurement uncertainty in caliper 
calibration, evaluation of the impact of sampling strategy 
on the uncertainty of roundness deviation measurement 
and discussion of the "systematic error" problem in the 
estimation of uncertainty of coordinate measurements 
with reference objects. 

If the purpose of the simulation is to determine the 
expanded uncertainty of measurement U - and this is the  
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case in most cases - it is not necessary to determine the 
probability distribution in the strict sense of the term - 
neither the form nor the distribution parameters are valid. 
Uncertainty U may be calculated directly from the 
empirical distribution of the error (random variable X) 
after rejection of 5% of the extreme values (both positive 
and negative), which corresponds to the direct 
application of the formula: 

 
 𝑃(|𝑋| < 𝑈) = 0,95 (1) 

 
Random number generators 

 
Commonly available software - used both in industry 

and at universities - is MS Excel. It contains a random 
number generator with a uniform distribution on the 
segment (0, 1), that is in the form of the function "= los()", 
in addition, the "Generating of pseudo-random numbers" 
tool that allows to generate random numbers is available 
in the appendix "Data analysis" for two probability 
distributions of a continuous random variable: uniform 
(uniform, rectangular) and normal. If we assume that in 
the MC method, the same distributions will be used as 
the error models, as in the B method, at least two 
random number generators are missing: the triangular 
distribution and the U distribution. In both cases, the 
cumulative distribution method can be used or the other, 
simpler solutions: 

 random numbers with a triangular distribution T(-a, a) 
can be obtained when two independently generated 
random numbers with the same uniform distributions R(-
a/2, a/2) are added, 

 random numbers with the distribution U(-a, a), 
understood as the distribution of the arcsine of the sine, 
can be generated using the fact that the random variable 
X defined as 

 𝑋 = 𝑎 ∙ sin(𝑌)  (2) 

 
has a U(-a, a) distribution, if the random variable Y has 
the uniform distribution R(0, 2π). 

 
Minitab [6] software is better suited for conducting 

simulations, which has much more generators, although 
only three are typical for this application (monotonous, 
normal and triangular). Significant advantages of this 
software include a maximum of 10,000,000 runs (the 
number of rows of a sheet) and friendly graphical tools 
(e.g. easy drawing of a histogram with the possibility of 
applying a graph of the density function). 
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Simulation using the MC method is also possible in 
the software for estimating the uncertainty of 
measurement - GUM Workbench [7]. There are 
generators of uniform, triangular, normal, U and 
trapezoidal distributions. This software also enables 
simulation for correlated components. 

 
Analysis of the caliper calibration example 

 

The basic document used in the calibration 
laboratories to estimate the measurement uncertainty in 
the calibration is EA-4/02 [8]. According to it, the 
uncertainty of measurement U (according to [8] "obtained 
from multiplying the standard uncertainty by the 
expansion coefficient") and the expansion coefficient k, 
should be given on the calibration certificates. The 
requirement given in brackets contradicts the practice, 
because often the extended uncertainty is determined 
first. 

A good example of showing the advantages of 
simulation technology is the estimation of the uncertainty 
of measurement when calipers are calibrated. The 
document assumes that two dominant uncertainty 
components have uniform distributions: R(-50, 50) and 
R(-25, 25) (in μm). It can be calculated theoretically 
(using the probability calculation) that their sum has the 
following trapezoidal distribution (fig. 1): 

 

 𝑓(𝑥) = {

0,0002𝑥 + 0,015dla𝑥 ∈ [−75,−25)

0,01dla𝑥 ∈ [−25, 25]

−0,0002𝑥 + 0,015dla𝑥 ∈ (25, 75]
 (3 

 
which allows to calculate the expanded uncertainty of 
measurement U as a quantile of 0.975 of this distribution. 
The value U = 59.19 μm is calculated in this way. 
 
 

 

 

Fig. 1. Graph of the probability function of the trapezoidal 
distribution as the sum of two uniform distributions R(-50, 50) 
and R(-25, 25), with the quantiles 0.025 and 0.975 marked 

 
However, value of U can be determined much more 

easily (and without knowledge of probability) by the MC 
method. Just: 

 generate two sequences of random numbers with the 
aforementioned uniform distributions and calculate the 
sum of pairs of random numbers, 

 reject 5% of the extreme values of the random 
numbers obtained in this way (it is more convenient to 
calculate the absolute values of the sum of pairs of 
random numbers and reject 5% of the largest values or 
calculate the quantile value of 0.95). 

In an MS Excel spreadsheet, it can be generated up to 
approximately 32,000 random numbers in one column. If 
such a number of repetitions is adopted, estimates of the 
expanded uncertainty of measurement from the range 
(58.87÷59.40) μm are obtained. Since the uncertainty of 
measurement is given with accuracy to one or two 

significant places, the accuracy obtained is quite 
sufficient. 

According to the requirements of document EA-4/02 
[8], value of the extension coefficient k has yet to be 
found on the calibration certificate. In the example given 
in EA-4/02, there are formulas, the origin of which is 
known or can be reproduced only by experts in the field 
of account probability. If the simulation technique is used, 
the task is simple: standard uncertainty is the standard 
deviation of the results of the simulation experiment, and 
the expansion coefficient is the quotient of U uncertainty 
and standard uncertainty u. In the simulation example u 
= 32 μm and k factor = 1.85 were obtained, while the 
exact (analytically calculated) values are 33 μm and 
1.83, respectively. 

It is worth noting that the example with a trapezoidal 
distribution as the sum of two uniform distributions is the 
only task solved by analytical tools. 

 
Analysis of the example - influence of the number of 
sampling points on the uncertainty of roundness 
deviation measurement 

 
The essence of the MC method is also explained by 

the example regarding the evaluation of the probability 
distribution of errors in measuring the roundness 
deviation (hole or shaft) given in [9]. It refers to the 
recommendation that, if it is necessary to use a small 
number of sampling points, it should be 7 points 
distributed evenly around the circumference of the circle. 
It was assumed that the deviation of roundness of the 
measured object has the form of triangularity (this is the 
least favorable case), and sampling takes place in 6, 7 or 
8 evenly spaced points. 

The equation of the circle with the deviation in the 
form of triangularity in the polar system (r, φ) has the 
form 

 
 𝑟 = 𝑅 + 𝐴 ∙ 𝑠𝑖𝑛(3𝜑) (4) 

 
where: R - nominal radius of circle, A - amplitude of 
roundness deviation. It was assumed that R = 100 mm 
and A = 0.05 mm (the simulation can be performed only 
for specific data). 

 
In the example given below - in contrast to [9] - the 

error of measuring this deviation is calculated instead of 
the deviation value. The simulation experiment in the MS 
Excel worksheet consists of: 

 generating from the uniform distribution on the 
distance (0, 2π/7) of the angular position of the first 
sampling point: 

 
 𝜑1 = 𝑙𝑜𝑠() ∙ 2𝜋/7 (5) 

 

 calculation of angular positions of the remaining 6 
sampling points: 

 

( 𝜑𝑖 = 𝜑1 + 2(𝑖 − 1) ∙
𝜋

7
; 𝑖 = 2. .7 (6) 

 

 calculation of radius values (second coordinate): 
 
 𝑟𝑖 = 𝑅 + 𝐴 ∙ 𝑠𝑖𝑛(3𝜑𝑖); 𝑖 = 1. .7 (7) 

 

 converting the coordinates of points to the Cartesian 
system: 
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 𝑥𝑖 = 𝑟𝑖 ∙ 𝑐𝑜𝑠(𝜑𝑖); 𝑖 = 1. .7 (8) 

 𝑦𝑖 = 𝑟𝑖 ∙ 𝑠𝑖𝑛(𝜑𝑖); 𝑖 = 1. .7 (9) 

 

 calculation of coordinates of the center and radius of 
the circle (the algorithm given in [10] was used, allowing 
to write patterns in one row of the MS Excel 
spreadsheet), 

 calculating the roundness deviation Δ as the 
maximum difference in the distance of the sampling 
points from the calculated center of the circle: 

 
 ∆= 𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛 (10) 

 

 calculation of the measurement error of roundness 
deviation δ (correct result is: 2A = 0.1 mm): 

 
 𝛿 = ∆ − 2 ∙ 𝐴 (11) 

 

 repeating these calculations a significant number of 
times and building the obtained histogram results. 

In the example, instead of generating the angular 
position of the first sampling point, it can be 
systematically divided the segment (0, 2π/7) into n parts 
and perform calculations n times, changing the position 
with a step of 2π/7/n. Number of repetitions does not 
have to be large; already for n = 50 very good results are 
obtained. However, if the results of the simulations are to 
be developed in the form of a histogram, it is worth 
assuming, for example, n = 1000. 

 
a) 

 

b) 

 

 
Fig. 2. Histogram of roundness deviation error evaluation 
depending on the number of sampling points: a) 6 points, b) 7 
and 8 points 

 

Results in the form of histograms are shown in fig. 2. 
In each case, the measurement errors are negative. With 
6 sampling points (fig. 2a), it is possible to make both an 

error equal to 0 and -100 μm (the value of the measured 
deviation is 100 μm). After rejection of 5% of the worst 
simulation results, the uncertainty U = 92 μm is obtained. 
In the case of 7 sampling points (fig. 2b), the 
measurement errors range from -2.5 to -5 μm, which is 
only 2.5% to 5% of the measured value, although they 
are never less than -2.5 μm. 95% of errors do not exceed 
U value = 4.6 μm. In the case of 8 sampling points (fig. 
2b), measurement errors range from -7,6 μm to 0. 95% 
of errors do not exceed U = 6.9 μm. 

Similarly, it can be analyzed the effect of other 
sampling strategies on the results of the diameter 
measurement and/or roundness deviation. 

 
Discussion of the problem with "systematic error" in 
the ISO 15530-3 standard 

 
Despite the publication of JCGM 100 and 101 [1, 4] 

documents, there is still no full agreement on the use of 
various methods for estimating uncertainty. In 2011, the 
ISO 15530-3 standard [11] was published, providing a 
procedure for estimating the uncertainty of coordinate 
measurement using the experiment. Before it, there was 
the technical specification ISO/TS 15530-3 [12] from 
2004. Significant differences between these documents 
led to a discussion, in which the authors of this 
publication also participate [e.g. 13]. 

In both versions, the experiment consists in 
performing a 20-fold measurement of the calibrated 
artifact. Measurements are spread over a longer period 
(in the example attached to the standard, it is 7 days). 
They are performed at different times of the day and by 
different operators. The document from 2004 [12] 
provides for the estimation of the expanded uncertainty 
of measurement based on a formula that, after omitting 
the details that are not relevant for this publication, is: 

 
 𝑈 = 2𝑠 + |�̅�|  (12) 

 
where: x - mean value, s - standard deviation of the 
observed differences with the results of the calibration. 

During the work upon the newer document, it was 
considered a systematic error, which should be - in 
accordance with the recommendations of the guide [1] – 
corrected. 

The problem lies in the fact that the average value 
mentioned is not the result of any known systematic 
influence and should not be treated as a systematic 
error. This can be confirmed by performing a simulation 
experiment consisting in generating 20 numbers from 
different distributions and demonstrating that the results 
obtained according to the formula from the document 
[12] do not give grounds to question its correctness. 

The experiment considered four probability 
distributions for measurement errors (normal, uniform, 
triangular and U) and it was assumed that in all cases, 
the expanded uncertainty of measurement U 
corresponding to the probability of 0.95 is the same and 
amounts to 10 μm. The results of the experiment defined 
in this way are listed in the Table. 
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TABLE. Results of the experiment to show the correctness 
of the formula (12), in μm 
 
 Distribution 

traingular normal uniform U 

�̅� –1,32,5 –1,41,2 –1,51,4 –1,74,1 

s 3,95,1 4,16,2 4,16,9 6,07,9 

U 8,211,0 8,314,0 8,315,0 1217 

�̅� 9,7 11,0 12,0 15,0 

 
 
As expected, average values from a 20-element sample 

derived from distributions with an expected value of 0 
may have values clearly different from 0, especially for 
distributions clearly different from normal distribution. 

 
Conclusions 
 
 The MC method - due to its versatility as well as the 
ease of design and implementation of the experiment - is 
worth recommending to supplement the methods of type 
A and B. 
 The examples indicate many possible applications. In 
addition, the MC method has didactic advantages. 
 A spreadsheet containing calculations can be found 
on the ATH Laboratory of Metrology 
(www.lm.ath.bielsko.pl) in the "Download" tab. 
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