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The dynamics of a mobile transport robot 
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The article presents the construction of a mobile transport 
robot which is a forklift model, used for laboratory testing of 
control methods for complex dynamic objects in changing 
operating conditions. The robot dynamics is calculated using 
Lagrange equations of the 2nd type with multipliers. The 
results of solving the inverse dynamics problem were 
presented using the robot’s trajectory which consists of 
stages of movement typical for transport tasks performed by 
forklift. 
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Synthesis of many types of control algorithms requires 
knowledge of the dynamics model of the controlled object [2, 
3]. For this purpose, models of varying complexity are used, 
usually taking into account the most important phenomena 
occurring during the movement of the object, which simplifies 
the calculation. Many mathematical formalisms are known to 
enable the synthesis of dynamic equations of motion of 
mechanical objects [8]. In the case of mobile circular robots, 
which are nonholonomic systems, the second kind of 
Lagrange equations with multipliers and Maggi's equations 
are often used [3, 4, 7]. From the Lagrange equations of the 
second type, dynamic motion equations are obtained, which 
allow to solve the simple and inverse task of dynamics. In 
contrast to Maggi's formalism, this method allows the 
determination of Lagrange multipliers, which in the case of 
mobile circular robots assume the form of the values of dry 
friction forces acting at the contact points of the robot's 
wheels with the road. 

The work uses the second kind of Lagrange equation to 
describe the dynamics of a mobile transport robot. Simulation 
studies have been carried out on the basis of this description.

Construction of a mobile transport robot 

 
The frame of the mobile transport robot (MRT) is made of 

aluminum mounting profiles from Bosch Rexroth. In addition 
to the assembly profiles, the manufacturer also offers various 
types of connecting and supporting elements – both rigid and 
movable. CAD MRT visualization is shown in fig. 1. MRT 
consists of a chassis and a lifting unit that allows transport of 
loads. The chassis is built from a frame supported by two free 
front wheels and a driven rear wheel mounted in a movable 
steering unit. 

Robotic DC motors (BLDC) [1] were used to drive the robot 
mobile platform. The forklift movement is provided by two line 
modules from WObit, equipped with DC motors. The MRT 
design is modeled on three-wheeled lift truck solutions with a 
driven and steered rear wheel. The robot makes it possible to 
transport loads of up to 20 kg. 

 
Dynamic traffic equations 

 
The Lagrange equations of the second type with 

multipliers were used to describe the MRT dynamics. The 
MRT model [9] shown in fig. 2 was adopted, consisting of: 
frame 5, two support wheels 1 and 2, driving wheel 3 attached 
to the steering wheel 4 and fork lift 6. Wheel 3 and steering 
wheel 4 are part of the driving-steering unit. This assembly 
rotates relative to the frame 5 about the axis z4 by an angle 
φ. The frame rests on support wheels 1 and 2, which can 
make free rotation about the axis with directions permanently 
associated with the frame of the robot, perpendicular to the 
plane of longitudinal symmetry of the frame. All wheels are 
made of hard plastic coated with rigid rubber. The radii of 
circles 1 and 2 are the same (r1 = r2), while the radius r3 of the  

 

 

   Fig. 1. Visualization of the CAD model of a mobile transport robot 
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wheel 3 is larger. The presented model has been reduced to 
the model in which the free wheels 1 and 2 were replaced by 
the free 1Z substitute wheel. The rotation angle of the 
replacement wheel is marked as αz. 

The robot's movement is described by means of a reduced 
form of equations of nonholonomic constraints. This made it 
possible to determine the driving moments and Lagrange 
multipliers [3, 5, 6], which are the tangent components of the 
ground reaction forces on the wheels, i.e. the dry friction 
forces at the contact point of the replacement wheel 1Z and 
the drive wheel 3 with the ground. Equations have the form: 

 
𝑥̇A − 𝑟z𝛼̇zcos𝛽 = 0 

 

𝑦̇A − 𝑟z𝛼̇zsin𝛽 = 0 
 

𝑥̇A + 𝑙𝛽̇ sin 𝛽 − 𝛼̇3𝑟3 cos(𝜑 + 𝛽) = 0 
 

𝑦̇𝐴 − 𝑙𝛽̇ cos 𝛽 − 𝛼̇3𝑟3 sin(𝜑 + 𝛽) = 0 

(1) 

 

where: 𝑥𝐴̇, 𝑦̇𝐴 – projections of the velocity vector of the A point 

associated with the MRT frame, 𝛼̇z – angular velocity of the 

free replacement wheel, 𝛼̇3  – angular velocity of the drive 

wheel, φ – steering wheel rotation angle with respect to the 
robot frame, β – momentary rotation angle of the robot frame. 

 
The first two equations are the projections of the velocity 

vector of the point of contact of the replacement wheel 1Z with 
the roadway on the axes of the system xy.  
 

a) 

 

b) 

 

c) 

 

Fig. 2. MRT scheme: a) top view, b) right view, c) models of road 
wheels and driving-steering unit 

The next two are the projections of the velocity vector of 
the point of contact between the drive wheel and the roadway 
on the axes of the system xy. 

The mobile robot platform under study is a two-degree 
system of freedom, because the two variables in the 
equations are independent variables. 

The Lagrange equations of the second type, used to 
determine the dynamic equations of motion of the non-
holonomic system, have the form: 

 

d

d𝑡
(
𝜕𝐸

𝜕𝐪̇
)
T

− (
𝜕𝐸

𝜕𝐪
)
T

= 𝐐 + 𝐉T(𝐪)𝛌 (2) 

 

where: 𝐪 = [𝑥A, 𝑦A, 𝛽,  𝛼Z,  𝛼3, 𝜑]T  – vector of generalized 

coordinates, E – kinetic energy of the system, Q – vector of 

generalized forces, J(q) – Jacobian, λ – vector of Lagrange 

multipliers. 
 
The kinetic energy of the system was determined as the 

sum of kinetic energy of individual structural elements: 
 

𝐸 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6 (3) 
 
Index numbers correspond to the numbering of structure 

elements in fig. 2. Particular kinetic energy equations have 
the form: 
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(4) 

 
where: m1, m2, m3, m4, m5, m6 – masses of individual solids; 
vB, vC, vD, vE, vS, vG – velocity vector values of the respective 
points; lx1, lx2, lx3, lz1, lz2, lz3, lz4, lz5, lz6 – mass moments of 
inertia of individual solids relative to the respective axes of 
coordinate systems associated with these solids. 

 
The dependencies describing the relationship of the 

angular velocity of the 1Z replacement wheel with the speed 
of the support wheels 1 and 2 were determined from the 
velocity distribution of points A, B and C: 

 

𝛼̇1 = 𝛼̇Z +
𝑙1
𝑟Z

𝛽̇ 

𝛼̇2 = 𝛼̇Z −
𝑙1
𝑟Z

𝛽̇ 

(5) 

 
where: r1 = r2 = rZ – radii of individual circles, l1 – distance of 
points B and C from point A. 

 
Kinematic equations (1) can be saved in the form of 

Jacobian: 
 

𝐉(𝐪)𝐪̇ = 0 (6) 
 

where: 
 

𝐉(𝐪) =

[
 
 
 
1 0 0 −𝑟zcos𝛽 0 0
0 1 0 −𝑟zsin𝛽 0 0

1 0 𝑙sin𝛽 0 −𝑟3cos(𝛽 + 𝜑) 0

0 1 −𝑙cos𝛽 0 −𝑟3sin(𝛽 + 𝜑) 0]
 
 
 
 

 
(7) 
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After determining the second type of Lagrange equations 
and performing a series of operations and mathematical 
transformations, a system of differential equations of motion 
of the MRT model was obtained: 
 

 (8) 

 
where: λz1, λz2, λ3, λ4 – Lagrange multipliers, being 
equivalents of the dry friction components at the contact point 
of the replacement wheel with the ground on the x-axis (λz1) 
and y-axis (λz2) and at the point of contact of the drive wheel 
with the ground the directions of the x-axis (λ3) and the y-axis 
(λ4); MN – wheel drive torque 3; MS – steering torque of the 
steering wheel 4; MO – momentum of wheel resistance 3;  
N1, N2, N3 – pressure forces of individual wheels; r1 = r2 = rZ 
and r3 – radii of individual wheels; l1, l2, l3, l4, l5, l6 – lengths 
resulting from the MRT geometry. 

 
Next, the procedure of decoupling Lagrange multipliers [3] 

from the system of equations (8) was applied. A form of 
equations was obtained that would be convenient for solving 
the task of simple and inverse dynamics, without the need to 
determine the values of Lagrange multipliers. 

The equations after decoupling Lagrange multipliers have 
the form: 
 

 (9) 

 

l

𝑟3
𝑎6𝜑̈ − 𝑎6sin(𝜑)𝛼̈3 − 𝑎6cos(𝜑)𝜑̇𝛼̇3 = 𝑀S − 𝑎9sgn(𝜑̇) (10) 

 
Values of the vector parameters a are: 

 (11) 

 
It was assumed that support wheels 1 and 2 are the same, 

thus: 
 

𝑚1 = 𝑚2, 𝐼x1 = 𝐼x2, 𝐼y1 = 𝐼y2, 𝐼z1 = 𝐼z2 (12) 

  

𝑎3 = 0, 𝑎4 = 0 (13) 

 
The system of equations (9) and (10) can be represented 

in matrix form: 
 

𝐌22(𝐪2)𝐪̈2 + 𝐂22(𝐪2, 𝐪̇2)𝐪̇2 + 𝐅22(𝐪2, 𝐪̇2) = 𝐁2(𝐪2)𝛕 (14) 

 
Matrices  𝐌22(𝐪2) , 𝐂22(𝐪2, 𝐪̇2) ,  𝐅22(𝐪2, 𝐪̇2)  i 𝐁2(𝐪2)  take 

the form of: 
 

𝐌22(𝐪) = [

(𝑎1+𝑎5)cos2𝜑 + 𝑎2sin
2𝜑

−2(𝑎3 + 𝑎4)sin𝜑 cos𝜑 + 𝑎8
−a6sin𝜑

−𝑎6sin𝜑
𝑙

𝑟3
𝑎6

]          (15) 

 

𝐂22(𝐪2, 𝐪̇2) = [

(−𝑎1 + 𝑎2 − 𝑎5)sin𝜑 cos(𝜑)𝜑̇

+(𝑎3 + 𝑎4)(sin
2𝜑 − cos2𝜑)𝜑̇

0

−a6cos(𝜑)𝜑̇ 0

]           (16) 

 

 (17) 

  

 (18) 

 
 
The obtained dynamic equations of MRT motion (14) with 

decoupled Lagrange multipliers – just like dynamic equations 
of motion (8) – fulfill all structural properties of mathematical 
models of mobile circular robots: 

 property I: generalized inertia matrix M22 (q2) is a 

symmetric matrix, positively defined; 

 property II: matrix: 

 

𝐒22(𝐪2, 𝐪̇2) = 𝐌̇22(𝐪2, 𝐪̇2) − 2𝐂22(𝐪2, 𝐪̇2) = [
𝑆1,1 𝑆1,2

𝑆2,1 𝑆2,2
]   (19) 
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it is an obliquely symmetrical matrix; its elements satisfy the 
dependences S22i,j = 0 for i = j, otherwise S22i,j = –S22i,j; 

 property III: dynamic equations of MRT motion in reduced 

coordinates are linear due to vector a, so the system of 
equations (14) can be written in the form: 
 

𝐌22(𝐪2)𝐪̈2 + 𝐂22(𝐪2, 𝐪̇2)𝐪̇2 + 𝐅22(𝐪2, 𝐪̇2) = 

= 𝐁22(𝐪2)𝛕2 = 𝐮 = 𝐘22(𝐪2, 𝐪̇2, 𝐪̈2)𝐚 
(20) 

 
where 𝐘22(𝐪2, 𝐪̇2, 𝐪̈2) is the so-called regression matrix. 

 
Simulation tests 

 
Simulation studies were carried out, allowing for solving 

the task of simple and inverse MRT dynamics with the use of 
the obtained object dynamics model. Simulations were 
carried out in the MATLAB/SIMULINK computing 
environment. The set trajectory of the robot's A point is taken 
into account (fig. 3). The waveforms of the control signals 
were obtained thanks to the solution of the inverse MRT 
dynamics problem, using dynamic motion equations (20), 
written in the following form: 
 

 (21) 

  

 (22) 

 
where the values of the model parameters, determined on the 
basis of the robot's CAD model analysis and on the basis of 
friction and pressure measurements, are: 
 

𝑝1 = 𝑎1 = 0,287 kgm2 

𝑝2 = 𝑎2 = 0,120 kgm2 

𝑝3 = 𝑎5 = 0,002 kgm2 

𝑝4 = 𝑎6 = 0,015 kgm2 

𝑝5 = 𝑎8 = 0,002 kgm2 

𝑝6 = 𝑎9 = 1,438 Nm 

𝑝7 = 𝑎10 = 0,832 Nm 

𝑝8 = 𝑎11 = 0,656 Nm 

(23) 

 
The waveforms of the control signals were obtained by 

solving the inverse MRT dynamics problem, using dynamic 
motion equations (20), stored in the form: 
 

𝐪̈2 = 𝐌22
−1(𝐪2)[𝐁22(𝐪2)𝛕2 − 𝐂22(𝐪2, 𝐪̇2)𝐪̇2 − 𝐅22(𝐪2, 𝐪̇2)] (24) 

 
In order to simulate the change of the load transported by 

the robot, it was assumed that the parameters p1 and p2 
change as follows: 

 
𝑝1(𝑡) = 0,2872 dla 𝑡 ∈< 0; 40) oraz 𝑡 ≥ 75 s   

𝑝1(𝑡) = 0,3512 dla 𝑡 ∈< 40; 75) 
(25) 

 
𝑝2(𝑡) = 0,1195 dla 𝑡 ∈< 0; 40) oraz 𝑡 ≥ 75 s 

𝑝2(𝑡) = 0,1261 dla 𝑡 ∈< 40; 75) 
(26) 

 

Fig. 3. Trajectory of the robot's A-point – given and received from the 
solution of the task of simple dynamics 

 
This corresponds to the transport task of the load with the 

mass mL = 10 kg. The course of parameters p1 and p2 over 
time is shown in fig. 4 and fig. 5. 

Parameter values increase when the robot is at point P1 of 
the given path, and return to the nominal value when the robot 
is at the point P2, which corresponds to the load of the MRT 
lift with the mass of the transported load and removal of 
additional load at appropriate moments. 
 

a) 

 

b) 

 

Fig. 4. Course of values: a) parameter p1, b) parameter p2 
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Fig. 5. Diagram of the simple task model and inverse MRT dynamics 
 

Fig. 6. Course of the drive torque:  
a) wheel 3 – MN,  

b) steering wheel 4 – MS 

a) b) 

 

 

 

 

a) b) c) 

 

 

  

d) e) f) 

   

Fig. 7. Runs: a) coordinates of robot A point, b) projection of speed vector A on axes xy, c) angle of rotation of drive wheel α3, d) steering 
angle φ, e) values of angular velocity of drive wheel ά3, f) the angular speed values of the steering wheel φ 
 
 

Based on the adopted relationships, a simulation model of 
the inverse and simple MRT dynamics was built in the 
MATLAB/SIMULINK computing environment, shown 
schematically in fig. 5. 

The solution of the inverse dynamics task allowed to obtain 
the courses of values of the MN and MS driving moments 

necessary for the implementation of the set trajectory of the 
robot's A point. 

During the movement of the robot with the load during 
start-up and braking, the values of the driving torque of the 
wheel 3 are greater than when the robot moves without load. 
Calculated values of drive moments were introduced to the 
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task of simple MRT dynamics and a realized trajectory was 
determined, which was compared with the trajectory (shown 
in fig. 3). The movement path of the robot's A point, obtained 
from the solution of the task of simple dynamics, is similar to 
the given path of movement. Fig. 7a shows the course of the 
coordinates of point A, and in fig. 7b – the course of 
projections of the velocity vector A on the x and y axes of the 
stationary reference system. In fig. 7c–d, the angles of 
rotation of the α3 driving wheel and steering wheel are 
presented, while in fig. 7e–f – the angular velocity values of 
the drive wheel and steering wheel φ are shown. 
 
Conclusions 
 

In the work, the model of MRT dynamics was synthesized 
thanks to the determination of dynamic equations of motion 
of the system with nonholonomic constraints, which allow 
solving the task of simple and inverse dynamics without the 
need to determine the values of Lagrange multipliers. The 
parameters of the MRT dynamics model were evaluated 
based on experimental studies and analysis of the robot's 
CAD models. The determined parameters were used in the 
simulation of simple and inverse dynamics. 

The presented MRT dynamics model will allow for the 
synthesis of robot tracking algorithms and the simulation of 
its motion in changing operating conditions. 
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