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Solving of optimization tasks using nonlinear FEM models 
creates problems because of large expenditure of calculation 
time. The response surface methodology RSM and hybrid 
search SHERPA algorithms in application of optimization of 
stamping die drawbeads are presented and compared in the 
paper. 
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Modern software for computer-aided design, using the 
finite element method, more and more often contain modules 
for solving optimization tasks. The user may formulate and 
solve such problems as: 

 parametric optimization (geometry optimization), where 
the decision variables are the dimensions or cross-sectional 
parameters of the FEM model, and the objective function may 
be stress, nodal displacement or natural frequency; 

 topological optimization, where the shape of the designed 
part is sought, which ensures its best distribution in the space 
due to the criterion of maximum stiffness, minimal natural 
frequency, etc.; 

 sensitivity analysis, in which the impact of changing 
selected parameters of the FEM model on the indicated size 
(criterion) is examined to determine the relevant parameters 
and eliminate the non-essential ones due to the improvement 
of a given criterion. 

In the mentioned problems, the optimization task is solved: 
 

𝑄(�̅�) → min (1) 
 
with constraints: 
 

𝑔𝑗(�̅�) ≤ 0𝑗 = 1, 2⋯𝑛𝑔
ℎ𝑘(�̅�) ≤ 0𝑗 = 1, 2⋯𝑛ℎ
𝑥𝑖
𝑑 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑔
𝑖 = 1, 2⋯𝑛

 

 

 
where: �̅� = [𝑥1, 𝑥2⋯𝑥𝑛]

𝐓  – vector of decision variables;  

𝑄(�̅�) – objective function. 

 
Improved solutions are most often searched according to 

the scheme: 
 

�̅�𝑘+1 = �̅�𝑘 + �̂�𝑘�̅�𝑘 (2) 

 

 

where: �̅�𝑘 – the direction of the search; �̂�𝑘 – step length, after 

which in the iteration k an improved solution is obtained [4]. 

 
The direction of the search is, for example, the direction 

opposite to the gradient of the objective function: 
 

�̅�𝑘 = −∇T𝑄(�̅�𝑘) (3) 

 
Because item �̅�𝑘+1 is to remain in the feasible set (to meet 

the constraints), the direction of the search is corrected so 
that it is an acceptable direction of improvement [4], that is, 
to meet the conditions: 
 

�̅�𝑘∇
T𝑄(�̅�𝑘) < 0

�̅�𝑘∇
T𝑔𝑗(�̅�𝑘) < 0𝑗 = 1,2,⋯ , 𝑛𝑔

 (4) 

 
Due to the mentioned problems of the optimization of the 

FEM model in each iteration concerning the solution of the 
task of optimization, it is necessary to solve the subproblem 
of the structural or modal analysis of the FEM model. If the 
time of solving the subproblem is not too long with the 
available computer memory resources and the processor's 
processing power, the solution of the optimization task can 
be obtained in an acceptable time from the engineering point 
of view. The possible reduction of the calculation time can be 
achieved by improving the numerical efficiency of the FEM 
model (e.g. by reducing the number of degrees of freedom) 
or by defining the initial decision values of the optimization 
task in such a way that the starting point is closer to the 
optimal solution (this is the location of the point can be 
determined, for example, on the basis of a coarse search of 
a permissible set). 

 
Optimization algorithms for non-linear FEM models 

 
In the optimization of non-linear FEM models, it is worth 

paying attention to two problems that should be dealt with so 
that the computer available resources can be solved in an 
acceptable time: 

 time of solving the task of non-linear FEM analysis is long 
enough that the implementation of the essential number of 
repetitions of a single iteration of the optimization algorithm 
results in too long total search time for the optimal solution – 
in this case there is insufficient numerical efficiency of the 
optimization algorithm; 

 nature of the problem of FEM nonlinear analysis causes 
that the determined directions of search for improved 
solutions do not lead to an optimal solution after an 
acceptable number of repetitions of a single iteration of the 
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optimization algorithm (the starting point has been incorrectly 
specified or the objective function's sensitivity to changes in 
the decision variables of the task is ambiguous) – including in 
the case of insufficient robustness of the optimization 
algorithm. 

Optimization algorithms are still being searched for, which 
would be numerically efficient enough and robustness to non-
linear model optimization problems. Further, two algorithms 
implemented include in the DynaForm program. 

 
SHERPA algorithm [7] 

 
SHERPA (simultaneous hybrid exploration, that is, 

progressive and adaptive) is an algorithm of simultaneous 
hybrid search, which is robust, progressive and adaptive. In 
essence, it is not a single algorithm, but a combination of two 
to ten different algorithms that work simultaneously, but the 
choice of algorithm and its parameters determining 
convergence and efficiency takes place automatically. As a 
result, SHERPA recognizes the nature of the optimized 
objective function and the feasible set, and then adapts to the 
optimization task to be solved, choosing the best algorithm 
with the best parameters at the moment. As with any other 
universal optimization algorithm, there is no guarantee that 
the algorithm will always find the optimal solution reliably and 
effectively. Numerical practice confirms, however, that 
statistically SHERPA is an algorithm that works well in many 
applications. 

The most important optimization algorithms used by 
SHERPA are: 

 local optimization algorithms, such as: 
– Levenberg-Marquardt algorithm [2], which is quickly 
convergent (especially for not very complex models), and at 
the same time sensitive to the selection of the starting point; 
– Nelder-Mead algorithm (crawling simplex) [3], which is 
resistant and moderately convergent (especially for complex 
models); 

 global optimization algorithms, such as: 
– differential evolution – moncar algorithm [6], which samples 
the large size feasible sets in the fastest way; 
– grid search algorithm [4], which coarsely and quickly 
recognizes the nature of the objective function and the 
feasible set. 

 
Response Surface Method (RSM) [1] 

 
The RSM (response surface methodology) method 

approximates the response of the FEM model to changes in 
the decision variables of the optimization task. The surface of 
the answer, which becomes the surrogate (meta-model) of 
the original optimization task. If the response surface is 
approximated by a series of base functions: 

 

𝑦(�̅�) ≅∑ 𝑎𝑖𝜙𝑖(�̅�)
𝐿

𝑖=1
 (5) 

 
This constant ai is determined by minimizing the sum of 

squares of deviations of the response surface in P control 

points of the FEM model response: 

 

∑ [𝑦(�̅�𝑝) −∑ 𝑎𝑖𝜙𝑖(�̅�)
𝐿

𝑖=1
]
2

→ 𝑚𝑖𝑛
𝑃

𝑝=1

 (6) 

 
The solution of the task (6) is the constant vector: 

 
�̅� = ([𝑿]𝑇[𝑿])−1[𝑿]𝑇�̅� (7) 

 
where: [𝑿] = [𝑋𝑝𝑖] = [𝜙𝑖(𝑋𝑝𝑖)]. 

By randomizing the location of control points, e.g. using 
the LHS (latin hypercube sampling) method, a metamodel of 
the original optimization task is obtained, which, by virtue of 
approximation according to formula (5), is much more 
effective numerically. 

An example of the practical use of optimization algorithms 
for the non-linear FEM model for the improvement of the 
construction of the press-forming die for car body part is 
described below. 

 
Optimization of the draw beads of die 

 
In order to produce a drawpiece without defects, the 

stamped metal sheet (blanket) must be held in appropriate 
positions with the appropriate force between the punch and 
the die in order to induce the plastic deformation needed to 
obtain the designed shape of the drawpiece. This function is 
realized by the so-called draw beads i.e. grooves in the die or 
blank holders, cooperating with the thresholds in the punch, 
which, by putting resistance to the sheet being pulled during 
pressing, hold it with the appropriate force. The task of 
optimization of string draw beads was to determine such a 
their profile and location that eliminates the drawpiece 
defects in the form of cracks and wrinkles. An embossing with 
defects before the draw beads are optimized is shown in fig. 
1. 
 

 

Fig. 1. Drawpiece with defects in the form of cracks and wrinkles 

 
For the purpose of the task, Dyna-Form models were built 

of FEM models and working surfaces of the die parts, i.e. die, 
punch and holders. Models of the working surface of the die 
were created from four node surface elements of the shell 
type, which were undeformable, and the form was carefully 
meshed using eight node surface elements of shell16 type 
(the so-called fully integrated shell). The blanket was 
attributed to the HSLA250 material, i.e. steel for cold 
stamping of the car body parts with a yield stress of 250 MPa 
and a ultimate stress of 345 MPa. The interactions of the die's 
working surfaces and the blanket were treated as one-sided 
constraints with friction and modeled with surface-to-surface 
contact elements. The coefficient of friction μ = 0.125 was 
assumed. In this way, a complete die and blanket FEM model 
was created, shown in fig. 2, which was used to simulate 
stamping and solve the task of optimizing draw beads. 
 

 

Fig. 2. Discrete model of the parts of the die and the blanket  
(1 – stamp, 2 – holder, 3 – die, 4 – blanket) 
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In the optimization task, eight draw beads have been 
defined whose initial location, shown in fig. 3, results from the 
experience of the designers. The task is solved in the 
DynaForm program, in which the string draw beads is 
replaced by force in the plane of the blanket, distributed 
evenly along the defined line. The value of the force depends 
on the profile of the string draw beads as well as the thickness 
and type of the material of the blanket, and it is calculated 
according to the Stoughton algorithm [5]. The program uses 
the relative value of the force along the draw beads, which is 
the percentage of the maximum force that prevents the sheet 
from moving through the draw bead. The default initial value 
is 50% of this force. After solving the task, the determined 
relative values of forces along the drawbeads can be 
converted into appropriate profile drawbead cross section 
according to the aforementioned Stoughton algorithm. 
 

 

Fig. 3. Arrangement of string thresholds on the form 

 
In order to carry out a forming simulation, a process 

kinematics was applied, according to which first the holder 
closes the blanket in the die, and then the advancing punch 
forming the blanket until the stamp and die are closed. 

After the simulation, the quality of the drawpiece should be 
checked using the forming limit diagram FLD, where the risk 
of cracks and wrinkles in the drawpiece are given. Fig. 4 
presents the simulation result for the drawpiece before 
optimizing the string draw beads, which confirms the risk of 
wrinkles and cracks in places where these defects did indeed 
occur (fig. 1). This indicates the correctness of the adopted 
FEM model. In order to obtain a non-defective drawpiece, 
forces along each of the draw bead should be selected so 
that cracks and wrinkles do not arise. 
 

  

Cracks 
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cracks 

Safe 

Tendency 
to wrinkles 

Wrinkles 

Big  
wrinkles 

Not taken 
out 

Fig. 4. FLD diagram for drawpiece before optimization of string draw 
beads 

 
Solution of the optimization task 

 
In the task of optimization of string draw beads, solved in 

the DynaForm program, the components of the decision 
variable vector �̅� were the values of forces along the draw 

beads, and the objective function 𝑄(�̅�)– the size of the 

drawpiece area in which there is a risk of cracking or 
wrinkling. The constraint was the percentage range of force 
along the draw beads: set 5%𝐹𝑖

𝑚𝑎𝑥 ≤ 𝐹𝑖 ≤ 80%𝐹𝑖
𝑚𝑎𝑥. It was 

also assumed that the values of forces along thresholds 1 and 
4 and 2 and 3 (fig. 3) are the same, which allowed to reduce 
the number of decision variables of the task to six. 

To compare the quality of solutions and calculation time, 
the same optimization task was solved using the SHERPA 
and RSM algorithms. The table lists the optimal values of 
decision variables. As you can see, in the case of both 
algorithms, the solutions are similar, which confirms the 
correctness of the results. The indicative times of solving the 
optimization task on a computer with an Intel i7/3.2GHz/16GB 
RAM processor were different and amounted to: for the 
SHERPA algorithm – about 12 hours, for the RSM algorithm 
– about 192 hours. 

Since the optimization goal was to improve the quality of 
the drawpiece, it is worth to perform the simulation of 
stamping and check the FLD diagram for optimal stringing 
draw beads. Fig. 5 presents such a diagram, from which it 
results that the optimization of the draw beads has brought 
the intended purpose (see fig. 4) and the drawpiece has no 
defects. 

 
TABLE. Optimal forces along the thresholds �̂�𝒊as a percentage 
of the force preventing the sheet from moving across the 
threshold 

Threshold number 1, 4 2, 3 5 6 7 8 

�̂�𝑖 ,% 
by SHERPA 21 20 3 3 11 9 

by RSM 20 20 2 2 10 11 
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Fig. 5. FLD diagram for drawpiece after optimization of string draw 
beads 

 
In practice, the optimum values of forces along the draw 

beads are automatically converted into the dimensions of 
their cross sections. Fig. 6 shows the DynaForm program 
dialog box, which gives the dimensions of an example draw 
bead No. 6 with semi-circular and rectangular profile. 

 

 

Fig. 6. Dimensions of a semicircular and rectangular draw bead no. 
6 of optimal cross section 
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Conclusions 
 

 Optimization problem solving algorithms available in the 
engineering software, in which the non-linear FEM response 
to changes in the decision variables of the task should be 
determined in a single iteration, are sufficiently effective in 
solving real project tasks. 

 Quality of the solution obtained by the RMS and SHERPA 
algorithms is comparable, but the SHERPA algorithm is 
numerically much more effective – the computation time was 
about 16 times shorter. 
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