Modelowanie sił w szlifowaniu obwodowym płaszczyzn według różnych planów badawczych

Forces modeling in a surface peripheral grinding process with the use of various design of experiment (DoE)

WITOLD HABRAT MARCIN ŻÓŁKOŚ JANUSZ ŚWIDER ELŻBIETA SOCHA*

W artykule przedstawiono modelowanie sił w procesie szlifowania obwodowego płaszczyzn ze stali 100Cr6 za pomocą ściernicy M3X60K5VE01-35, przeprowadzone z zastosowaniem centralnego planu kompozycyjnego ortogonalnego (CCF) i planu Boxa-Behnkena. Do planowania eksperymentu oraz analizy wyników wykorzystano program Design-Expert. Modele sił uzyskane w ramach wybranych planów porównano na podstawie współczynników determinacji oraz wartości odchylenia standardowego składnika resztowego.

SŁOWA KLUCZOWE: szlifowanie obwodowe, 100Cr6, planowanie eksperymentu, plan centralny kompozycyjny, plan Boxa-Behnkena

The paper presents forces modeling with the use of DoE models, such as (Box-Wilson) central composite design in face centered variant (CCF) and Box-Behnken design in a surface peripheral grinding process of 100Cr6 steel with M3X60K5VE01-35 grinding wheel. Experiment design and result analysis were done with the use of Design-Expert software. Force models, obtained with application of selected designs of experiment, were compared on the basis of the **coefficient of determination, and values of residual standard** deviation.

KEYWORDS: peripheral grinding, design of experiment, 100Cr6, central composite design, Box-Behnken design

Planowanie eksperymentu (DoE) jest szeroko stosowane do charakterystyki procesów i tworzenia modeli empirycznych. Zmniejsza liczbę koniecznych do przeprowadzenia pomiarów, co przekłada się na skrócenie ich czasu i na zmniejszenie zużycia materiałów, a w konsekwencji – na redukcję kosztów badań. Dobór planu badawczego odpowiedniego do danego procesu jest bardzo istotny ze względu na dokładność i poprawność otrzymanych wyników, czyli matematycznych zależności modelowych opisujących wybrane wielkości procesu [1–3].

Jedną z metod stosowanych w projektowaniu eksperymentów jest metoda powierzchni odpowiedzi (RSM) – na niej są oparte wieloskładnikowe plany badawcze (m.in. Boxa-Behnkena i centralny plan kompozycyjny ortogonalny – CCF). Przydaje się ona w modelowaniu i analizie zjawisk (procesów), w których kilka zmiennych oddziałuje na wartość wyjściową. Modele uzyskane tą metodą mogą stanowić podstawę do optymalizacji nastaw procesu ze względu na przyjętą funkcję celu [2–4].

Modelowanie sił w procesie szlifowania i tym samym umożliwienie określania ich wartości przed obróbką jest ważne ze względu na ich związek z odkształceniami obrabianej części i technologiczną warstwą wierzchnią [5]. DOI: https://doi.org/10.17814/mechanik.2018.10.165

W artykule dokonano analizy wpływu zastosowanego planu badawczego na postać oraz parametry modeli opisujących wpływ wybranych parametrów procesu obwodowego szlifowania stali 100Cr6 na wartość składowych siły szlifowania. Postać i parametry modeli określono na podstawie wyników eksperymentu prowadzonego z zastosowaniem centralnego planu kompozycyjnego ortogonalnego (CCF) i planu Boxa-Behnkena.

Warunki badań doświadczalnych

Badania procesu szlifowania obwodowego płaszczyzn przeprowadzono na stanowisku wyposażonym w szlifierkę do płaszczyzn G+H FS 640 Z oraz siłomierz piezoelektryczny Kistler 9121 i przeznaczony do niego wzmacniacz Kistler Type 5019 A. Dodatkowo stanowisko wyposażono w układ chłodzenia wysokociśnieniowego z dyszą igłową, przez którą płyn chłodząco-smarujący był podawany z wydatkiem 22 l/min na całej szerokości ściernicy [6, 7].

Obrabianym materiałem była stal 100Cr6, hartowana na wskroś i odpuszczana do twardości 58 HRC. Do badań użyto ściernicy obwodowej firmy Andre Abrasive Articles o oznaczeniu 7-300x50x76.2 P100; F10; G10 M3X60K5VE01-35. Ściernica miała ziarna ścierne o średniej wielkości 275 µm z monokrystalicznego korundu, z 30-procentowym udziałem elektrokorundu mikrokrystalicznego, wiązane spoiwem ceramicznym [8]. Badania prowadzono w układzie przeciwbieżnego szlifowania obwodowego płaszczyzny o szerokości 30 mm i długości 50 mm. Przed każdym przejściem pomiarowym wykonywano obciąganie ściernicy jednoziarnistym obciągaczem diamentowym ze stałymi parametrami:

- prędkością obwodową v_d = 25 m/s,
- dosuwem a_{ed} = 0,02 mm,
- liczbą przejść i_d = 3,
- wskaźnikiem pokrycia $k_{\rm d}$ = 6÷7.

Następnie wykonywano przejście z dosuwem 0,002 mm i posuwem 1000 mm/min, aby usunąć luźne ziarna pozostałe po procesie ostrzenia ściernicy, oraz jedno przejście wyiskrzające. Później następowało przejście obróbkowe, dla którego rejestrowano wartości składowej normalnej i stycznej siły szlifowania. Po przejściu pomiarowym wykonywano trzy przejścia wyiskrzające w celu zapewnienia stałego naddatku dla kolejnego przejścia.

Czynnikami wejściowymi, mającymi wpływ na składowe siły szlifowania w badanym procesie, były następujące parametry technologiczne:

- prędkość szlifowania v_s = 25÷35 m/s,
- posuw $v_{\rm f}$ = 1000÷7000 mm/min,
- dosuw szlifowania a_e = 0,01÷0,03 mm.

Wartości parametrów wejściowych w podanych przedziałach przyjmowały trzy poziomy zmienności. Aby określić wpływ planu badawczego na postać modeli składowych siły szlifowania, badania zaprojektowano z wykorzystaniem

^{*} Dr inż. Witold Habrat (witekhab@prz.edu.pl), mgr inż. Marcin Żółkoś (markos@prz.edu.pl) – Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej; dr inż. Janusz Świder (swider@cerel.pl) – Instytut Energetyki Oddział Ceramiki CEREL; dr inż. Elżbieta Socha (elzbieta. socha@andre.com.pl) – Andre Abrasive Articles

dwóch planów bazujących na metodzie powierzchni odpowiedzi (RSM) – centralnego planu kompozycyjnego ortogonalnego (CCF) oraz planu Boxa-Behnkena. Centralny plan kompozycyjny rotatabilny (CCC) został odrzucony z powodu generowania punktów gwiezdnych poza określonym obszarem parametrów nastawnych. Dla podanych wcześniej zakresów zmienności parametrów nastawnych otrzymano ujemne wartości posuwu v_f i dosuwu szlifowania a_e , co jest niemożliwe do wykonania.

Eksperyment przeprowadzono według odpowiednich (dla wybranych planów badawczych) zestawów wartości parametrów wejściowych procesu, wygenerowanych za pomocą programu Design-Expert (zob. tablicę).

TABLICA. Zestawienie parametrów wejściowych oraz zmierzonych wartości składowych siły szlifowania dla rozpatrywanych planów badawczych

Plan Boxa-Behnkena					
Lp.	v₅, m/s	v _f , mm/min	a _e , mm	<i>F_n</i> , N	F_t , N
1.	25	1000	0,02	109,0	37,7
2.	35	1000	0,02	89,1	32,7
3.	25	7000	0,02	218,1	88,2
4.	35	7000	0,02	191,1	75,8
5.	25	4000	0,01	107,9	35,3
6.	35	4000	0,01	84,6	30,6
7.	25	4000	0,03	281,7	124,4
8.	35	4000	0,03	249,4	102,4
9.	30	1000	0,01	59,5	18,5
10.	30	7000	0,01	103,2	38,2
11.	30	1000	0,03	137,1	53,1
12.	30	7000	0,03	293,6	120,9
13.	30	4000	0,02	178,6	73,6
14.	30	4000	0,02	179,8	72,8
15.	30	4000	0,02	188,3	77,1
16.	30	4000	0,02	193,4	77,9
17.	30	4000	0,02	187,3	76,8
Centralny plan kompozycyjny ortogonalny CCF					
Lp.	v _s , m/s	v _f , mm/min	a _e , mm	<i>F</i> _n , N	F_t , N
1.	25	1000	0,01	74,6	18,7
2.	35	1000	0,01	63,3	19,5
3.	25	7000	0,01	133,4	43,5
4.	35	7000	0,01	111,5	38,7
5.	25	1000	0,03	205,7	77,9
6.	35	1000	0,03	157,6	58,4
7.	25	7000	0,03	339,3	133,9
8.	35	7000	0,03	311,5	114,7
9.	25	4000	0,02	226,5	86,7
10.	35	4000	0,02	189,0	71,9
11.	30	1000	0,02	109,2	37,5
12.	30	7000	0,02	210,4	80,4
13.	30	4000	0,01	106,2	36,0
14.	30	4000	0,03	295,2	113,0
15.	30	4000	0,02	202,2	75,6
16.	30	4000	0,02	204,6	76,9
17.	30	4000	0,02	212,7	79,1
18.	30	4000	0,02	211,6	78,9
			,		
19.	30	4000	0,02	214,7	80,7

Wyniki badań doświadczalnych

Po wykonaniu badań przeprowadzono analizę uzyskanych wartości składowych siły szlifowania (tablica) w programie Design-Expert. Do dopasowania wybrano zmodyfikowany (zawierający tylko elementy istotne statystycznie) model kwadratowy. Istotność wpływu poszczególnych parametrów nastawnych i ich interakcji określano na podstawie analizy wariancji ANOVA. Następnie jakość dopasowania uzyskanych modeli do wartości zmierzonych dla danego planu badawczego określano na podstawie współczynników determinacji *R*² i odchylenia standardowego składnika resztowego s. Wartości s wyznaczano dla wartości teoretycznych, wyliczonych z zależności modelowych, opisujących składowe siły szlifowania, oraz wartości eksperymentalnych, zmierzonych dla poszczególnych planów badawczych.

Na rys. 1 i 2 zaznaczono punkty planu badawczego, w których otrzymane wartości są powyżej (czerwone kropki) lub poniżej (szare kropki) wartości przewidywanych (teoretycznych).

Rys. 1. Zależność składowej normalnej F_n siły szlifowania od posuwu v_f i dosuwu szlifowania a_e dla prędkości szlifowania v_s = 30 m/s, otrzymana dla planu: a) Boxa-Behnkena, b) CCF

Na podstawie przeprowadzonej analizy wyników uzyskano zależności modelowe (1) i (2), opisujące składową normalną F_n w funkcji parametrów nastawnych procesu. Zależność (1) otrzymano dla badań przeprowadzonych według planu Boxa-Behnkena, a zależność (2) – dla badań przeprowadzonych według planu CCF (w obu przypadkach modele uwzględniają tylko parametry nastawne istotne statystycznie):

$$F_{\rm n} = 56,018 - 2,562 \cdot v_{\rm s} + 2,798 \cdot 10^{-2} \cdot v_{\rm f} + 3822,5 \cdot a_{\rm e} + 0,94 \cdot v_{\rm f} \cdot a_{\rm e} - 3,706 \cdot 10^{-6} \cdot v_{\rm f}^{\,2}$$
(1)

$$F_{\rm n} = 61,188 - 2,932 \cdot v_{\rm s} + 3,398 \cdot 10^{-2} \cdot v_{\rm f} + 5194,6 \cdot a_{\rm e} + 0,752 \cdot v_{\rm f} \cdot a_{\rm e} - 4,062 \cdot 10^{-6} \cdot v_{\rm f}^{\ 2}$$
(2)

Z podanych zależności i powierzchni odpowiedzi wynika, że wpływ prędkości szlifowania v_s na wartości siły normalnej F_n jest niewielki w porównaniu z pozostałymi parametrami nastawnymi. Dla modelu (1) współczynnik determinacji wyniósł $R^2 = 0.988$, a odchylenie standardowe składnika resztowego s = 9,07. Natomiast dla modelu (2) wartości te wynosiły odpowiednio: $R^2 = 0.986$ i s = 10,37. To wskazuje na uzyskanie nieznacznie lepszego dopasowania modelu dla siły normalnej F_n w przypadku planu Boxa-Behnkena.

Na rys. 2 przedstawiono powierzchnie opisane równaniami (3) i (4), prezentujące zależności składowej stycznej $F_{\rm t}$ siły szlifowania od dosuwu ściernicy $a_{\rm e}$ i posuwu $v_{\rm f}$ dla prędkości szlifowania $v_{\rm s}$ wynoszącej 30 m/s.

Rys. 2. Zależność składowej stycznej F_t siły szlifowania od posuwu v_f i dosuwu szlifowania a_e dla prędkości szlifowania v_s = 30 m/s, otrzymana dla planu: a) Boxa-Behnkena, b) CCF

Dla składowej stycznej F_t siły szlifowania wykonano identyczną analizę wyników i otrzymano zależności modelowe, opisujące tę składową w funkcji parametrów nastawnych procesu, uzyskane dla planu Boxa-Behnkena (3) oraz dla planu centralnego kompozycyjnego ortogonalnego CCF (4):

 $F_{\rm t} = 10,785 - 1,102 \cdot v_{\rm s} + 1,411 \cdot 10^{-2} \cdot v_{\rm f} + 1874,16 \cdot a_{\rm e} + 0,401 \cdot v_{\rm f} \cdot a_{\rm e} - 1,823 \cdot 10^{-6} \cdot v_{\rm f}^{\ 2}$ (3)

 $F_{\rm t} = -39,597 + 0,585 \cdot v_{\rm s} + 1,497 \cdot 10^{-2} \cdot v_{\rm f} + 4879,16 \cdot a_{\rm e} + 86,75 \cdot v_{\rm s} \cdot a_{\rm e} + 0,285 \cdot v_{\rm f} \cdot a_{\rm e} - 1,753 \cdot 10^{-6} \cdot v_{\rm f}^2$ (4)

Analiza wariancji przeprowadzona dla zależności (3) wykazała istotność wpływu na siłę styczną F_{t} tych samych

parametrów nastawnych co w przypadku zależności (1) i (2). Z kolei dla zależności (4) analiza wykazała wpływ tych samych parametrów co dla zależności (3) i dodatkowo – interakcję prędkości szlifowania v_s oraz dosuwu szlifowania a_e .

Przy siłach stycznych F_t również zauważono bardzo mały wpływ prędkości szlifowania v_s na ich wartości w porównaniu z wpływem posuwu v_f i dosuwu szlifowania a_e . Dla zależności modelowej (3) współczynnik determinacji wyniósł $R^2 = 0,966$, a odchylenie standardowe składnika resztowego s = 5,86. Dla zależności modelowej (4) wartości te wyniosły odpowiednio: $R^2 = 0,987$ i s = 3,49. To świadczy o uzyskaniu lepszego dopasowania modelu siły stycznej F_t w przypadku zastosowania planu badawczego CCF.

Podsumowanie

Na podstawie otrzymanych wyników możliwe jest sformułowanie następujących wniosków:

 w przypadku obu planów badawczych otrzymano zbliżone zależności opisujące składową normalną *F*_n, różniące się tylko nieznacznie wartościami współczynników;

• na podstawie współczynników determinacji R^2 i odchylenia standardowego składnika resztowego s można stwierdzić, że dla składowej normalnej F_n nieco lepsze dopasowanie uzyskano dla planu Boxa-Behnkena,

• w przypadku zastosowania planu badawczego CCF otrzymano postać zależności opisującej składową styczną F_{t} , która różniła się od tej uzyskanej dla planu Boxa-Behnkena dodatkowym czynnikiem równania, stanowiącym interakcję prędkości szlifowania v_{s} i dosuwu szlifowania a_{e} ; • na podstawie współczynników determinacji R^{2} i odchylenia standardowego składnika resztowego s można stwierdzić, że dla składowej stycznej F_{t} nieznacznie lepsze dopasowanie uzyskano w przypadku zaprojektowania eksperymentu według centralnego planu kompozycyjnego ortogonalnego (CCF);

 obie metody planowania eksperymentu dają porównywalne wyniki, przy czym w każdej z metod uzyskuje się zwiększone dopasowanie modelu dla innej składowej siły szlifowania;

 na korzyść planu Boxa-Behnkena przemawiają mniejsza liczba koniecznych do wykonania pomiarów oraz zwiększona dokładność dopasowania dla istotniejszej w tym procesie składowej normalnej *F*_n siły szlifowania.

LITERATURA

- Krajnik P., Kopač J. "Adequacy of matrix experiment in grinding". Journal of Materials Processing Technology. 157–158 (2004): s. 566–572.
- Rudrapati R., Pal P.K., Bandyopadhyay A. "Modeling and optimization of machining parameters in cylindrical grinding process". *The International Journal of Advanced Manufacturing Technology*. 82, 9–12 (2016): s. 2167–2182.
- Montgomery D.C. "Design and Analysis of Experiments". Hoboken, NJ: John Wiley & Sons, 2017.
- Markopoulos A.P., Habrat W., Galanis N.I., Karkalos N.E. "Modelling and Optimization of Machining with the Use of Statistical Methods and Soft Computing". *Design of Experiments in Production Engineering*. Switzerland: Springer International Publishing, 2016.
- Habrat W., Krupa K., Laskowski P. "Modelowanie sił w procesie szlifowania stopu Inconel 718 ściernicami z mikrokrystalicznego korundu spiekanego". *Mechanik.* 86, 8–9 (2013): s. 174–180.
 Babiarz R., Żyłka Ł., Płodzień M. "Koncepcja budowy układu wysologicki z k., Żyłka Ł., Płodzień M. "Koncepcja budowy układu wyso-
- Babiarz Ř., Żyłka Ł., Płodzień M. "Koncepcja budowy układu wysokociśnieniowego chłodzenia procesu szlifowania stopów lotniczych". *Mechanik.* 87, 8–9 CD (2014): s. 4–7.
 Kieraś S., Nadolny K., Wójcik R. "Aktualny stan wiedzy i techniki w za-
- Kieraś S., Nadolny K., Wójcik R. "Aktualny stan wiedzy i techniki w zakresie chłodzenia i smarowania strefy obróbki w procesach szlifowania". *Mechanik*. 88, nr 8–9 CD1 (2015): s. 204–211.
- 8. www.andre.com.pl/ (dostęp: 20.05.2018 r.).