
MECHANIK NR 11/2018  

 

How to cite this article: 
 

Author: Wojciech Płowucha 
 

Title of article: „Szacowanie niepewności pomiarów współrzędnościowych metodą analizy wrażliwości – podstawy teoretyczne” 
(“Evaluation of coordinate measurement uncertainty by sensitivity analysis – theoretical background”) 
 

Mechanik, Vol. 91, No. 11 (2018): pages 953–956 
 

DOI: https://doi.org/10.17814/mechanik.2018.11.168 

 
Evaluation of coordinate measurement uncertainty 
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Szacowanie niepewności pomiarów współrzędnościowych 
 metodą analizy wrażliwości – podstawy teoretyczne 
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Theoretical background of new method for uncertainty 
evaluation was presented on the examples of measurement 
of circle and arc radius. The method uses the formula for 
CMM maximum permissible error of length measurement and 
the reverification test results as the input data. 
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The estimation of the uncertainty of coordinate 
measurements is one of the important problems in the face 
of the widespread use of coordinate measuring machines 
(CMM). The previous approach to this issue, however, 
makes them inaccessible, and even not understandable to 
an ordinary user. ATH is working on ordering and 
disseminating this issue [1]. 

The ISO/TS 15530-1 [2] technical specification 
distinguishes three methods for estimating measurement 
uncertainty. The method with the use of the reference object 
has been given the ISO 15530-3 standard [3] and is 
described in detail in [4]. The method with the use of 
simulation is the subject of the technical specification 
ISO/TS 15530-4 [5]. Its use is limited because it requires the 
use of special software. The third – the method of sensitivity 
analysis – according to ingrained conviction is only suitable 
for estimating uncertainty in the case of simple tasks. This 
statement refers to the publication [6], in which, as an 
example of application, a publication [7] on the estimation of 
uncertainty in the measurement of small hole diameters is 
pointed out. It is true that there exists a document VDI/VDE 
2617-11 [8], which formally contains information for 
estimating the uncertainty of the coordinate measurements 
using the sensitivity analysis method, but the described 
procedure is complex, and the two examples in it refer only 
to the diameter and distance of the axis from plane. 

Significant barriers to the use of the sensitivity analysis 
method include the large number of sampling points and the 
complexity of measurement models that require knowledge 
of geometric CMM errors. The first obstacle was overcome 
when Jakubiec et al. [9] defined the measurement model 
based on the minimum mathematical number of points and 
indicated the possibility of treating the coordinate 
measurement as indirect, where the direct measurements 
are differences in the coordinates of pairs of points, and the 

measurement of coordinate differences can be estimated on 
the basis statistical information on geometrical errors and 
CMM head error. The developed method is universal, but its 
significant disadvantage is the considerable labor-intensity 
at the stage of identifying CMM errors [10, 11]. 

The author of this publication noted that if the uncertainty 
of measuring coordinate differences is expressed using the 
formula for the maximum permissible error of length 
measurement (EL, MPE), then a significant simplification of 
the required analyzes is obtained, at the expense of 
possible slight over-estimation of measurement uncertainty 
[12]. On this basis, the method was developed in 
accordance with the modern approach to estimating the 
uncertainty of measurements, and at the same time it is a 
simple methodology, taking into account the existing 
coordinate techniques and thus possible for direct 
application. 

 
Essence of the new method of sensitivity analysis 

 
As a preliminary to the description of a new method for 

estimating the uncertainty of a coordinate measurement, a 
known example of estimating the uncertainty of the 
measurement of the mean radius of a flat arc of an object 
will be given. The measurement is made using a measuring 
microscope, and the measured quantities are directly 
arrow s and chord c (fig. 1). 

 

 

Fig. 1. Principle of radius measurement with a microscope 

 
The radius of the arc R is calculated according to the 

formula: 
 

𝑅 =
𝑐2

8𝑠
+
𝑠

2
 (1) 
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and the complex standard uncertainty of measurement 
(assuming no correlation) – from the formula: 

 

𝑢𝑅 = √(
𝜕𝑅

𝜕𝑐
∙ 𝑢𝑐)

2

+ (
𝜕𝑅

𝜕𝑠
∙ 𝑢𝑠)

2

 (2) 

wherein: 

𝜕𝑅

𝜕𝑐
=

𝑐

4𝑠
 (3) 

𝜕𝑅

𝜕𝑠
=
−𝑐2

8𝑠2
+
1

2
 (4) 

 
According to the modern approach to the estimation of 

measurement uncertainty, both the standard uncertainties us 
and uc can be estimated using the B method, based on the 
pattern of the limit error of the length measurement, which 
for microscopes and CMM assumes the general form of 
type EL, MPE = A + BL. 

The ISO 14253-2 [13, p. 8.4.5] standard as one of the 
possibilities of estimating uncertainty takes into account the 
adoption of EL, MPE as the highest possible value of this error 
(a = EL, MPE) and selection of the appropriate probability 
distribution , on the basis of which you can convert the value 
of a to standard uncertainty. When using the uniform 

distribution 𝑢 = 𝑎/√3. It is quite common to justify the use of 

a normal distribution and then you can accept 𝑢 = 𝑎/2 or 

even 𝑢 = 𝑎/3  [14]. In this article, the last of these 

possibilities was adopted; then: 
 

𝑢𝑐 = (𝐴 + 𝐵𝑐)/3 (5) 

𝑢𝑠 = (𝐴 + 𝐵𝑠)/3 (6) 

 
There are three examples of the development of 

measurement results for the same subject, differing in the 
adopted strategy, namely the value of the arrow s. The 
calculation assumes that the maximum permissible error of 
measuring the length of EL, MPE = 2 + 0.004L. 

The development of measurement results of the same 
subject (R = 50 mm) in the form of uncertainty budgets for 
various values of arrow s is shown in tabs. I–III. 

 
TABLE I. Uncertainty budget for the measurement of the radius 
of the arch by a microscope; arch arrow s = 8 mm 

 mm 𝜕𝑅/𝜕 ui, μm 𝜕𝑅/𝜕 ∙ 𝑢𝑖, μm 

s 8.000 -5.25 0.68 -3.56 

c 54.259 1.7 0.75 1.25 

   u = 3.77 

 
TABLE II. Uncertainty budget for the measurement of the 
radius of the arch by a microscope; arch arrow s = 25 mm 

 mm 𝜕𝑅/𝜕 ui, μm 𝜕𝑅/𝜕 ∙ 𝑢𝑖, μm 

s 25.000 -1.00 0.70 -0.70 

c 86.603 0.87 0.78 0.68 

   u = 0.97 

 
TABLE III. Uncertainty budget for the measurement of the 
radius of the arch by a microscope; arch arrow s = 50 mm 

 mm 𝜕𝑅/𝜕 ui, μm 𝜕𝑅/𝜕 ∙ 𝑢𝑖, μm 

s 50.000 0 0.73 0 

c 100.001 0.5 0.8 0.40 

   u = 0.40 

 
The examples indicate that the measurement uncertainty 

of the radius of the arc depends significantly on the 
measurement strategy. Although the measurements are 
made with the same device, the uncertainty decreases with 

the increase of the arc arrow value adopted for 
measurement. In the last example, we measure the 
diameter: the derivative after s is equal to zero, which 
means that the measurement uncertainty of the arrow does 
not affect the uncertainty of the radius measurement. 

 
Sensitivity analysis in relation to the measurement of 
the co-ordinate radius of a circle arc 

 
The model of coordinate measurement proposed in the 

new version of the sensitivity analysis method uses the 
mathematically minimal number of points. As in the previous 
case, information about the accuracy of the machine is the 
same formula for EL, MPE and the same probability 
distribution. As a measurement model, the formula for the 
radius of the circle described on the triangle was taken 
(fig. 2). 

 

Fig. 2. Model for measuring the coordinate radius of a circle 

 
The radius of a circle is calculated according to the 

formula: 

𝑅 =
𝑎𝑏𝑐

4𝑆
 (7) 

where: a, b, c – side lengths; S – the surface of the triangle. 
 
The sides lengths expressed by the differences in 

coordinates of points (vector components) are: 
 

𝑎 = √𝑥𝐶𝐵
2 + 𝑦𝐶𝐵

2 + 𝑧𝐶𝐵
2  (8) 

𝑏 = √𝑥𝐴𝐶
2 + 𝑦𝐴𝐶

2 + 𝑧𝐴𝐶
2  (9) 

𝑐 = √𝑥𝐴𝐵
2 + 𝑦𝐴𝐵

2 + 𝑧𝐴𝐵
2  (10) 

 
The surface S of the triangle can be calculated using the 

geometrical interpretation of the vector product in the 
pattern (as the point A, the vertex lying opposite the longest 
side of the triangle should be taken): 

 

𝑆 = |𝐴𝐵 × 𝐴𝐶|/2 (11) 

 
To facilitate further calculations, the following 

designations were adopted: 
 

𝑀1 = 𝑦𝐴𝐵 ∙ 𝑧𝐴𝐶 − 𝑧𝐴𝐵 ∙ 𝑦𝐴𝐶 (12) 

𝑀2 = −𝑥𝐴𝐵 ∙ 𝑧𝐴𝐶 + 𝑧𝐴𝐵 ∙ 𝑥𝐴𝐶  (13) 

𝑀3 = 𝑥𝐴𝐵 ∙ 𝑦𝐴𝐶 − 𝑦𝐴𝐵 ∙ 𝑥𝐴𝐶 (14) 

𝑀 = √𝑀1
2 +𝑀2

2 +𝑀3
2 (15) 
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Finally, the radius R can be written as: 

𝑅 =
𝑎𝑏𝑐

2𝑀
 (16) 

 
Radius R is a function of nine components of the AB 

vectors (xAB, yAB, zAB), AC (xAC, yAC, zAC) and CB (xCB, yCB, 
zCB), or else: nine coordinate differences of points A, B and 
C. 

The measurement uncertainty of the radius is calculated 
from the formula: 

𝑢𝑅 = √∑(
𝜕𝑅

𝜕𝑥𝑖
𝑢𝑥𝑖)

29

𝑖=1

 (17) 

 
where the differences in x, y and z coordinates are generally 
designated as xi, the standard uncertainties of their 
measurement are generally designated as uxi and calculated 
(similar to the previous one) according to the formula: 

 

𝑢𝑥𝑖 = 𝐸𝐿,𝑀𝑃𝐸/3 = (2 + 0,004𝑥𝑖)/3 (18) 

 
The necessary partial derivatives needed for the budget 

are as follows: 
 

𝜕𝑅

𝜕𝑥𝐴𝐵
=
𝑎𝑏𝑥𝐴𝐵
2𝑐𝑀

−
𝑎𝑏𝑐(−𝑀2𝑧𝐴𝐶 +𝑀3𝑦𝐴𝐶)

2𝑀3  (19) 

𝜕𝑅

𝜕𝑦𝐴𝐵
=
𝑎𝑏𝑦𝐴𝐵
2𝑐𝑀

−
𝑎𝑏𝑐(𝑀1𝑧𝐴𝐶 −𝑀3𝑥𝐴𝐶)

2𝑀3
 (20) 

𝜕𝑅

𝜕𝑧𝐴𝐵
=
𝑎𝑏𝑧𝐴𝐵
2𝑐𝑀

−
𝑎𝑏𝑐(−𝑀1𝑧𝐴𝐶 +𝑀2𝑦𝐴𝐶)

2𝑀3
 (21) 

𝜕𝑅

𝜕𝑥𝐴𝐶
=
𝑎𝑐𝑥𝐴𝐶
2𝑏𝑀

−
𝑎𝑏𝑐(𝑀2𝑧𝐴𝐵 −𝑀3𝑦𝐴𝐵)

2𝑀3
 (22) 

𝜕𝑅

𝜕𝑦𝐴𝐶
=
𝑎𝑐𝑦𝐴𝐶
2𝑏𝑀

−
𝑎𝑏𝑐(−𝑀1𝑧𝐴𝐵 +𝑀3𝑥𝐴𝐵)

2𝑀3
 (23) 

𝜕𝑅

𝜕𝑧𝐴𝐶
=
𝑎𝑐𝑧𝐴𝐶
2𝑏𝑀

−
𝑎𝑏𝑐(𝑀1𝑦𝐴𝐵 −𝑀2𝑥𝐴𝐵)

2𝑀3
 (24) 

𝜕𝑅

𝜕𝑥𝐶𝐵
=
𝑏𝑐𝑥𝐶𝐵
2𝑎𝑀

 (25) 

𝜕𝑅

𝜕𝑦𝐶𝐵
=
𝑏𝑐𝑦𝐶𝐵
2𝑎𝑀

 (26) 

𝜕𝑅

𝜕𝑧𝐶𝐵
=
𝑏𝑐𝑧𝐶𝐵
2𝑎𝑀

 (27) 

 
Three examples of measuring the results of the same 

object (R = 50 mm) are given, which correspond to the 
described measurement strategies (fig. 3). 
 
a) b) c) 

   
Fig. 3. Arrangement of sampling points: a) s = 8 mm, b) s = 25 mm, 
c) s = 50 mm 

The development of measurement results in the form of 
uncertainty budgets is presented in tabs. IV–VI. 

 
TABLE IV. Uncertainty budget – example from fig. 3a 

Component xi, mm 
𝜕𝑙

𝜕𝑥𝑖
  uxi, m 

𝜕𝑙

𝜕𝑥𝑖
𝑢𝑥𝑖, m 

xAB -27.129 -0.774 0.703 -0.544 

yAB -8.00 2.625 0.677 1.778 

zAB 0.00 0.000 0.667 0.000 

xAC 27.129 0.774 0.703 0.544 

yAC -8.00 2.625 0.677 1.778 

zAC 0.00 0.000 0.667 0.000 

xBC 54.259 0.922 0.739 0.681 

yBC 0.00 0.000 0.667 0.000 

zBC 0.00 0.000 0.667 0.000 

   u =  2.72 

 
TABLE V. Uncertainty budget – example from fig. 3b 

Component xi, mm 
𝜕𝑙

𝜕𝑥𝑖
  uxi, m 

𝜕𝑙

𝜕𝑥𝑖
𝑢𝑥𝑖, m 

xAB -43.301 -0.289 0.724 -0.209 

yAB -25.0 0.500 0.700 0.350 

zAB 0.0 0.00 0.667 0.000 

xAC 43.301 0.289 0.724 0.209 

yAC -25.0 0.500 0.700 0.350 

zAC 0.0 0.000 0.667 0.000 

xBC 86.603 0.577 0.782 0.452 

yBC 0.0 0.000 0.667 0.000 

zBC 0.0 0.000 0.667 0.000 

   u =  0.732 

 
TABLE VI. Uncertainty budget – example from fig. 3c 

Component xi, mm 
𝜕𝑙

𝜕𝑥𝑖
  uxi, m 

𝜕𝑙

𝜕𝑥𝑖
𝑢𝑥𝑖, m 

xAB -50 0.0 0.733 0.0 

yAB -50 0.0 0.733 0.0 

zAB 0 0.0 0.667 0.0 

xAC 50 0.0 0.733 0.0 

yAC -50 0.0 0.733 0.0 

zAC 0 0.0 0.667 0.0 

xBC 100 0.5 0.800 0.4 

yBC 0 0.0 0.667 0.0 

zBC 0 0.0 0.667 0.0 

   u =  0.4 

 
In the budget of uncertainty presented in the tab. IV, four 

partial derivatives are equal to 0, which results from the fact 
that the measured circle lies in the plane xy of the machine 
co-ordinate system. The largest components of uncertainty 
are related to the differences in the y-coordinates of points A 
and B and A and C, because the related weights (partial 
derivatives) are large. 

In the budget of uncertainty presented in the tab. V, as 
before, the four partial derivatives are equal to 0. The values 
of the uncertainty have changed, the largest being the 
component related to the difference of coordinates x points 
B and C. 

In the budget of uncertainty presented in the tab. VI, 
single partial derivative – and consequently one component 
of measurement uncertainty – has a value other than zero. It 
is an xBC component associated with measuring the 
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difference of x coordinates lying on the diameter of B and C 
points. The obtained uncertainty of measurement is less 
than in the previous example. Sampling strategy refers to a 
direct two-point diameter measurement. Point A is involved 
in the measurement only in that it indicates where the 
diameter of the circle is to be measured. A similar effect can 
be obtained when points B and C lie close to each other 
facing point A. 

The results of the comparison of the two discussed 
models of radius measurement of the circle arc are shown in 
fig. 4. 
 

 

Fig. 4. Comparison of two radius circle measurement models 

 
The fact that different models lead to different estimates 

of measurement uncertainty is obvious. However, it can be 
noticed that the measurement uncertainty values obtained 
do not differ significantly. The graph presented includes the 
arc arrow values from 8 mm to 98 mm, i.e. also exceeding 
the value of its radius and, interestingly, the model based on 
the measurement of the arrow and chord (s-c) gives the 
minimum values of uncertainty when (approximately) the 
arrow of the arc and the bowstring are the same, which in 
the coordinate measurement corresponds to the even 
distribution of the points. 

 
Uncertainty of measuring the diameter of a circle 

 
Usually, when the objective of the coordinate 

measurement is the global dimension, i.e. the diameter of 
the average circle, Chebyshev, the smallest described or 
the largest one entered [14], the appropriate strategy is the 
even distribution of sampling points. The measurement 
model will be appropriate here, in which the characteristic 
points are placed at 120°. For this case, the value of the 
standard measurement uncertainty (R = 50 mm) equal to 
u = 0.53 μm was obtained. 

More rarely, when the objective of the coordinate 
measurement is the two-point local dimension [14], the 
model with points arranged as in fig. 3c and the model with 
points B and C close to each other, opposite the point A are 
more appropriate. the uncertainty of the standard radius 
measurement u = 0.40 μm, in the second u = 0.43 μm. 

 
Conclusions 
 

The developed method is universal. It allows estimating 
the measurement uncertainty of all geometrical 
characteristics, and thus both dimensions and geometrical 
deviations. 

The method is consistent with the calibration procedure, 
which is based on the measurement of the length of the 
reference plates, set out, among others along the axis of the 
CMM coordinate system. The model presented as input 
information uses information directly related to the pattern. 

The model uses a mathematically minimal number of 
points that can be equated with sampling points. In actual 
measurements, the number of sampling points is much 
greater than the minimum mathematical, therefore the 
uncertainty values obtained may be at most higher than the 

actual uncertainty of the measurement, which is in line with 
the rules, or even recommended, if it results in lowering 
costs or shortening time of elaboration of measurement 
results [13]. 

The developed method allows to observe the relationship 
between the uncertainty of length measurement and the 
uncertainty of measuring various geometrical 
characteristics, such as dimensions of integral elements or 
geometrical deviations. 

A spreadsheet containing calculations can be found on 
the ATH Laboratory of Metrology website in the "Download" 
tab (www.lm.ath.bielsko.pl). 
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