Wpływ parametrów szlifowania wgłębnego na nanotwardość i chropowatość powierzchni stali C45

Influence of parameters of deep grinding on nanohardness and surface roughness of C45 steel

MARIUSZ DEJA ALICJA STANISŁAWSKA MAREK SZKODO KAROLINA WSZELAK*

DOI: https://doi.org/10.17814/mechanik.2018.11.183

Przedstawiono wyniki badań wpływu głębokości współbieżnego szlifowania powierzchni płaskich na chropowatość i nanotwardość warstwy wierzchniej stali C45 o strukturze ferrytyczno-perlitycznej i średniej wielkości ziarna 20 µm. Dla wszystkich wartości głębokości szlifowania uzyskano znaczny wzrost twardości warstwy wierzchniej przedmiotu obrabianego.

SŁOWA KLUCZOWE: szlifowanie, nanotwardość, stan warstwy wierzchniej, struktura ferrytyczno-perlityczna, umocnienie odkształceniowe

The paper presents the results of investigations on the effect of the depth of concurrent grinding of flat surfaces on the roughness and nano-hardness of the surface layer of C45 steel with a ferritic-pearlitic structure and average grain size of 20 µm. A significant increase in the hardness of the surface layer of the workpiece was obtained for all grinding depths. KEYWORDS: grinding, nano-hardness, state of the surface layer, ferritic-pearlitic structure, deformation strengthening

Dobór parametrów technologicznych w procesie obróbki wykończeniowej pozwala na spełnienie założonych wymagań konstrukcyjnych. Prawidłowo przeprowadzony proces szlifowania umożliwia uzyskanie dużej dokładności wymiarowo-kształtowej, odpowiedniego stanu warstwy wierzchniej, a także wymaganej struktury geometrycznej powierzchni [1,2]. Modelowanie i optymalizacja procesu szlifowania idą najczęściej w kierunku uzyskania małej chropowatości powierzchni oraz dużej wydajności obróbki [3].

Dobór parametrów obróbkowych jest czynnikiem determinującym rozkład twardości i naprężeń w warstwie wierzchniej przedmiotu obrabianego wykonanego z materiału o określonym udziale objętościowym składników struktury, co z kolei wpływa m.in. na odporność na zużycie obrabianej powierzchni [4, 5].

Badania eksperymentalne

Przygotowanie próbek. Przedmioty obrabiane (PO) o wysokości 10 mm zostały odcięte z pręta ze stali C45 o średnicy Ø50 mm na elektroerozyjnej wycinarce drutowej AccuteX AU-300IA. Poddano je obróbce cieplnej polegającej na wyżarzaniu normalizującym w temperaturze 850°C przez 20 min, a następnie chłodzeniu na spokojnym powietrzu.

Po obróbce cieplnej uzyskano strukturę ferrytyczno-perlityczną (rys. 1) o średniej wielkości ziarna 20 µm. W stanie po normalizowaniu stal miała następujące właściwości mechaniczne: wytrzymałość na rozciąganie – 490 MPa i twardość – 167 HB [6].

Rys. 1. Struktura ferrytyczno-perlityczna stali C45 po normalizowaniu. Próbka trawiona Nitalem. Zdjęcie wykonane mikroskopem świetlnym LM Leice

■ Warunki badań. Szlifowanie przeprowadzono na szlifierce CNC do płaszczyzn SPG 25×60 z poziomą osią wrzeciona. Do obróbki wykorzystano ściernicę firmy Norton z ziarnami z elektrokorundu szlachetnego o charakterystyce technicznej 38A60LVS i wymiarach: średnicy 250 mm i szerokości 25 mm. Każdy test poprzedzono kondycjonowaniem ściernicy z wykorzystaniem jednoziarnistego obciągacza diamentowego przy następujących parametrach nastawionych w programie sterującym:

- głębokości a_{ed} przy jednym przejściu: 0,1 mm,
- liczbie przejść obciągających: 4,
- prędkości obwodowej ściernicy: v_{sd} = 23 m/s,
- posuwie poprzecznym ściernicy: f_{ad} = 0,2 mm/obr,
- liczbie przejść wyiskrzających: 2.

Współbieżne szlifowanie wgłębne realizowanso z użyciem chłodziwa, przy stałej prędkości obwodowej ściernicy $v_s = 25$ m/s oraz stałej prędkości posuwu $v_{ft} = 1$ m/min. Zmiennym parametrem była głębokość szlifowania nastawiana w kolejnych testach odpowiednio do wartości: $a_e = 2$; 8; 14; 20 µm. Minimalna głębokość $a_e = 2$ µm została przyjęta z uwagi na małą twardość przedmiotu obrabianego.

^{*} Dr hab. inż. Mariusz Deja (mariusz.deja@pg.edu.pl), mgr inż. Alicja Stanisławska (alicja.stanislawska@pg.edu.pl), mgr inż. Karolina Wszelak (karolina.wszelak@pg.edu.pl) – Katedra Technologii Maszyn i Automatyzacji Produkcji, Wydział Mechaniczny Politechniki Gdańskiej; dr hab. inż. Marek Szkodo (marek.szkodo@pg.edu.pl) – Katedra Inżynierii Materiałowej i Spajania, Wydział Mechaniczny Politechniki Gdańskiej

W każdym teście szlifowano nowy PO o strukturze ferrytyczno-perlitycznej uzyskanej po obróbce cieplnej (rys. 1). W celu zapewnienia jednakowej głębokości szlifowania, PO po zamocowaniu na stole magnetycznym wyrównywano poprzez zabielenie z głębokością $a_e = 1 \mu m$.

Aparatura pomiarowa. Badania nanotwardości przeprowadzano na nanoindenterze (NanoTest Vantage, Micro Materials, Wielka Brytania) z użyciem piramidalnego, diamentowego, trzyściennego wgłębnika Berkovicha o kącie wierzchołkowym 124,4°.

Każda próbka została poddana 10 pomiarom nanoindentacji z maksymalnymi wartościami sił, odpowiednio: 50, 100 i 500 mN.

Na rys. 2 przedstawiono przykładowe krzywe uzyskane w teście nanoindentacji wykonanym na powierzchni PO po szlifowaniu z głębokością $a_e = 2 \mu m$, przy obciążeniu maksymalnym wgłębnika 50 mN. Czas narastania siły od wartości zerowej wynosił 20 s, czas wstrzymania z maksymalną wartością siły – 5 s, a czas odciążania – 20 s. Pojedyncze indentacje były oddalone od siebie o 50 μm . Podczas wykonywania pomiaru rejestrowana była krzywa obciążenia w funkcji zagłębienia wgłębnika Berkovicha. Wartość nanotwardości (H) wyznaczono z wykorzystaniem metody Olivera–Pharra w programie NanoTest.

Rys. 2. Przykładowe krzywe obciążania w funkcji głębokości zagłębienia wgłębnika Berkovicha; pomiar na powierzchni PO ze stali C45 po szlifowaniu z głębokością a_e = 2 µm

Topografie powierzchni badano mikroskopem sił atomowych (AFM, NaniteAFM, Wielka Brytania) z użyciem bezstykowego modułu z siłą 55 mN na obszarze 50 × 50 µm. Wyznaczono parametr chropowatości powierzchni *Sa*.

Wyniki badań i dyskusja

Wpływ głębokości szlifowania na nanotwardość warstwy wierzchniej stali C45 o średniej wielkości ziarna 20 µm, przy różnych maksymalnych obciążeniach wgłębnika, przedstawiono w tablicy i na rys. 3.

Twardość warstwy wierzchniej różniła się w zależności od głębokości szlifowania i od maksymalnego obciążenia wgłębnika. Najmniejszy przedział zmienności twardości, 2,9÷3,4 GPa, zarejestrowano dla maksymalnego obciążenia wynoszącego 500 mN. Uzyskano prawie dwukrotny wzrost twardości w porównaniu ze stanem wyjściowym po normalizowaniu, w którym twardość wynosiła 167 HB, czyli ok. 1,67 GPa. Odchylenie standardowe dla przeprowadzonych pomiarów było stosunkowo niewielkie i mieściło się w granicach 0,2÷0,3 GPa.

TABLICA. Nanotwardość i parametr chropowatości powierzchni Sa po współbieżnym szlifowaniu wgłębnym przedmiotów ze stali C45 o średniej wielkości ziarna 20 μm

	Ziarno 20 µm			
	Głębokość szlifowania, mm	Siła, mN	Nanotwardość, GPa	Chropowatość Sa, nm
	0,002	50	5,59	82,542
		100	4,79	
		500	3,40	
	0,008	50	7,53	81,608
		100	7,10	
		500	3,47	
	0,014	50	5,59	91,455
		100	4,19	
		500	3,00	
	0,020	50	7,49	113,310
		100	7,49	
		500	2.90	

Rys. 3. Wpływ głębokości szlifowania na twardość warstwy wierzchniej stali C45 o średniej wielkości ziarna 20 µm, przy różnych maksymalnych obciążeniach wgłębnika

Jak wykazały badania metalograficzne z użyciem mikroskopu skaningowego (rys. 4), przy głębokości szlifowania 2 µm powstały odkształcenia plastyczne zarówno w ziarnach ferrytu, jak i ziarnach perlitu, co przyczyniło się do prawie dwukrotnego wzrostu twardości w warstwie wierzchniej.

W trakcie testu nanoindentacji, z zastosowaniem maksymalnego obciążenia wynoszącego 500 mN, wgłębnik zagłębiał się na ok. 2600 nm ±100 nm, co przyjmuje się za minimalną głębokość umocnienia odkształceniowego materiału dla określonego obciążenia. Przy mniejszych maksymalnych obciążeniach w teście nanoindentacji, wynoszących odpowiednio 50 mN i 100 mN, odnotowano większy wzrost twardości warstwy wierzchniej. Przedział zmienności twardości wynosił 4,17÷7,1 GPa dla obciążenia 100 mN i 5,59÷7,53 GPa dla obciażenia 50 mN. Przy obciążeniu 50 mN wgłębnik zagłębiał się w materiale na ok. 600 nm ±20 nm, a przy obciążeniu 100 mN na głębokość 950 nm ±50 nm. Zgodnie z oczekiwaniami nastąpił wzrost twardości spowodowany umocnieniem odkształceniowym ziaren ferrytu i ziaren perlitu po szlifowaniu, przy czym twardość w warstwie wierzchniej szlifowanej powierzchni PO malała wraz z odległością od tej powierzchni w głąb materiału.

Rys. 4. Mikrostruktura warstwy wierzchniej stali C45 po szlifowaniu z głębokością 2 µm. Widoczne plastyczne odkształcenia ziaren perlitu i ferrytu (elektronowy mikroskop skaningowy JEOL JSM-7800 F)

Rys. 5. Mikrostruktura warstwy wierzchniej stali C45 po szlifowaniu z głębokością 20 µm. Widoczna utleniona warstwa wierzchnia o grubości ok. 3–4 µm, pod którą znajduje się odkształcone plastycznie ziarno perlitu (elektronowy mikroskop skaningowy JEOL JSM-7800 F)

Jak widać na rys. 3, rozkład twardości w warstwie wierzchniej powierzchni PO, będący wynikiem różnego zagłębienia wgłębnika dla zastosowanych obciążeń, zależał również od głębokości szlifowania. Największą twardość przypowierzchniową (dla obciążenia 50 mN) – 7,53 GPa – osiągnięto dla głębokości szlifowania *a*_e = 8 μm.

W przypadku większej głębokości szlifowania – 14 µm i 20 µm, otrzymano inne rozkłady twardości od powierzchni PO w głąb materiału. Jak wynika z rys. 3, maksymalna twardość przy powierzchni PO dla tych głębokości szlifowania wyniosła ok. 6 GPa. Twardość ta jest o ok. 20% mniejsza niż po szlifowaniu z głębokością $a_e = 8 \mu m$. Podobnie jak w przypadku szlifowania z mniejszymi głębokościami, również tu nastąpił spadek twardości wraz z odległością od szlifowanej powierzchni PO, przy czym większy spadek występuje dla głębokości szlifowania 14 µm niż dla 20 µm.

Wykonane z użyciem mikroskopu skaningowego badania metalograficzne warstwy wierzchniej PO szlifowanego z głębokością $a_e = 20 \ \mu m$ uwidoczniły dodatkową warstwę zmienionego materiału z wyraźną granicą rozdziału od ziaren ferrytu i perlitu. Warstwa ta dobrze przylegała do ferrytyczno-perlitycznego podłoża – rys. 5. Wpływ głębokości szlifowania na chropowatość powierzchni PO przedstawiono na rys. 6. Parametr chropowatości powierzchni *Sa* utrzymywał się na jednakowym poziomie dla dwóch początkowych głębokości szlifowania. Wzrost chropowatości nastąpił wraz ze zwiększeniem głębokości szlifowania – od $a_e = 14 \ \mu m$.

Rys. 6. Wpływ głębokości szlifowania na chropowatość powierzchni przedmiotów ze stali C45 o średniej wielkości ziarna 20 μm

Podsumowanie

Na podstawie wyników badań można wysunąć następujące wnioski:

 Szlifowanie normalizowanej stali C45 o średniej wielkości ziarna 20 μm z podanymi parametrami powoduje znaczny wzrost twardości przypowierzchniowej warstwy obrabianego materiału.

• Największy wzrost twardości warstwy przypowierzchniowej wystąpił w przypadku szlifowania z głębokością $a_e = 8 \ \mu m$. Twardość materiału przy powierzchni PO wyniosła 7,53 GPa, co oznacza czteryipółkrotny wzrost twardości w porównaniu z twardością materiału przed szlifowaniem. Wzrost ten był spowodowany umocnieniem odkształceniowym ziaren zarówno ferrytu, jak i perlitu.

 Przy szlifowaniu stali z głębokością 14 μm i 20 μm wzrost twardości był mniejszy niż dla głębokości szlifowania 8 μm. Twardość przy powierzchni warstwy wierzchniej po szlifowaniu wynosiła 6 GPa, co oznacza wzrost o 350% w stosunku do twardości materiału przed szlifowaniem.

• Parametr chropowatości powierzchni Sa utrzymywał się na jednakowym poziomie dla dwóch początkowych głębokości szlifowania 2 µm i 8 µm. Wzrost chropowatości nastąpił wraz ze zwiększeniem głębokości szlifowania od $a_e = 14$ µm.

LITERATURA

- Oczoś K.E., Porzycki J. "Szlifowanie: podstawy i technika". Warszawa: Wydawnictwa Naukowo-Techniczne, 1986.
- Uhlmann E. i in. "Influence of rail grinding process parameters on rail surface roughness and surface layer hardness". Wear. 366–367 (2016): s. 287–293.
- Janardhan M. "An integrated evaluation approach for modelling and optimization of surface grinding process parameters". *Materials Today: Proceedings.* 2 (2015): s. 1622–1633.
- Denkena B., Grove T., Lucas H. "Influences of grinding with Toric CBN grinding tools on surface and subsurface of 1.3344 PM steel". *Journal* of *Materials Processing Technology*. 229 (2016): s. 541–548.
 Sadat Zoei M., Hosein Sadeghi M., Salehi M. "Effect of grinding pa-
- Sadat Zoei M., Hosein Sadeghi M., Salehi M. "Effect of grinding parameters on the wear resistance and residual stress of HVOF-deposited WC-10Co-4Cr coating". Surface & Coatings Technology. 307 (2016): s. 886÷891
- Dobrzański L.A. "Metalowe materiały inżynierskie", Wydawnictwo naukowo-techniczne, 2004.