Wpływ kształtu stempla na siłę nacisku przy wyciskaniu na zimno wyprasek w kształcie naczyń cylindrycznych z miedzi

The influence of punch shape on the cold backward extrusion force for copper cans

TOMASZ MIŁEK *

DOI: 10.17814/mechanik.2016.5-6.74 Międzynarodowa Konferencja IMT 2016

Podano wyniki badań doświadczalnych oraz modelowania komputerowego (MES) procesu wyciskania przeciwbieżnego na zimno wyprasek w kształcie naczyń cylindrycznych z miedzi. W badaniach użyto różnych kształtów stempli (płaskiego, płasko-stożkowego, stożkowego i wklęsłego). Przedstawiono wykresy zmian sił nacisku w funkcji przemieszczenia stempla.

SŁOWA KLUCZOWE: wyciskanie przeciwbieżne, MES, wypraska z miedzi

The paper presents experimental and computer modelling (FEM) results of investigations on cold backward extrusion of copper cans. The different punch-face shapes used for cold extrusion (flat, flat and conical, conical and concave). In investigations, computer calculated and experimental force waveforms as the function of displacement were obtained.

KEYWORDS: backward extrusion, FEM, copper can

Wyciskanie jest procesem obróbki plastycznej z zakresu kształtowania objętościowego. Jego odmianą jest wyciskanie przeciwbieżne, które powstaje, gdy materiał płynie w kierunku przeciwnym do kierunku ruchu tłoczyska [1, 2]. Obliczenie odkształcenia rzeczywistego w tym procesie jest trudne ze względu na duży gradient odkształceń w ściance wyrobu [1÷3]. Z tego względu do celów praktycznych stopień odkształcenia przy wyciskaniu definiowany jest jako: względne odkształcenie dna wypraski $\varepsilon_h = \Delta h/h_0$ (gdzie Δh przemieszczenie stempla, ho - wysokość wstępniaka), odkształcenie przekroju $\varepsilon_A = (A_0 - A_1)/A_0$ oraz odkształcenie zastępcze $\varepsilon = ln(A_0/A_1)$ (gdzie A_0 – przekrój wstępniaka, A_1 przekrój wypraski) [1, 2]. W ostatnich latach powstało wiele prac dotyczących wyciskania na zimno wyprasek kołowo-symetrycznych z miedzi, zarówno w zakresie modelowania numerycznego, jak i badań doświadczalnych [3÷15]. Istotna część omawianych prac związana jest z tzw. mikrowyciskaniem (czyli kształtowaniem wyrobów o bardzo małych wymiarach) [11÷15]. Kluczowymi zagadnieniami w analizie procesu wyciskania jest określenie zmian sił nacisku, rozkładu linii płynięcia, temperatury, odkształcenia i napreżenia [4, 16].

W artykule przedstawiono wyniki badań doświadczalnych oraz modelowania komputerowego (MES) procesu wyciskania przeciwbieżnego wyprasek na zimno w kształcie naczyń cylindrycznych z miedzi przy założonych odkształceniach względnych: dna wypraski $\varepsilon_h = 0.0,69$; przekroju $\varepsilon_A = 0,67$ oraz zastępczym $\varepsilon = 1,1$. Ich celem było określenie wpływu kształtu stempla na siłę nacisku.

Metodyka badań

Ze względu na osiową symetrię wyciskania cylindrycznych wyprasek obliczenia numeryczne (MES) przeprowadzono dla płaskiego stanu z użyciem komercyjnego programu QFORM-2D [17, 18]. Opis wykorzystanego modelu przedstawiono w pracach [17, 18]. W dwuparametrowej krzywej umocnienia przyjęto za literaturą [19] wykładnik krzywej umocnienia n = 0,3 oraz stałą materiałową C = 420 MPa dla miedzi na zimno. W badaniach uzyto próbek w postaci odcinków pręta z czystej elektrolitycznie miedzi o średnicy $d_0 = 24,5 \text{ mm}$ i wysokości $h_0 = 16 \text{ mm}$ $(h_0/d_0 = 0.65)$, które zostały wyżarzone w temperaturze 550 °C w czasie 1 h, a następnie były chłodzone w wodzie. Eksperyment przeprowadzono na odpowiednio oprzyrządowanej hydraulicznej maszynie wytrzymałościowej ZD100 (zmodyfikowanej przez firmę LABORTECH) o maksymalnym nacisku 1 MN, spełniającej metrologiczną 1 klasę dokładności i wyposażonej w komputerowe stanowisko do pomiaru sił i przemieszczeń (program Test & Motion). Narzędzie do wyciskania wyposażono w wymienne stemple o stałej średnicy 20 mm i różnym kształcie powierzchni czołowej (płaskiej, płasko-stożkowej o średnicy płaskiej części 10 mm i kącie części stożkowej 30°, stożkowej o średnicy płaskiej części 10 mm i kącie części stożkowej 45° oraz wklęsłej o promieniu 28,5 mm). Wypraski wyciskano w pojemniku o wewnętrznej średnicy 25 mm do uzyskania grubości denka 5 mm.

Wyniki badań oraz ich analiza

Wyniki modelowania komputerowego wyciskania przeciwbieżnego z miedzi na zimno wyprasek w kształcie naczyń cylindrycznych, stemplami o różnych kształtach w zakresie odkształcenia siatki Lagrange'a przedstawiono na rys. 1.

Rys. 1. Ostatni etap modelowania komputerowego wyciskania przeciwbieżnego wyprasek w kształcie naczyń cylindrycznych z miedzi na zimno ($\varepsilon_h = 0,69$; $\varepsilon_A = 0,67$; $\varepsilon = 1,1$) z użyciem stempli o różnych kształtach: *a*) płaskiego, *b*) płasko-stożkowego, *c*) stoż-kowego, *d*) wklęsłego

^{*} Dr inż. Tomasz Miłek (matm@tu.kielce.pl) – Katedra Technik Komputerowych i Uzbrojenia, Wydział Mechatroniki i Budowy Maszyn, Politechnika Świętokrzyska

Analiza linii płynięcia potwierdziła literaturowe wnioski [2, 3] dotyczące występowania charakterystycznych obszarów w przekroju wypraski przy wyciskaniu stemplem płaskim, tzn.: obszaru najmniejszego umocnienia na zewnątrz części dennej i w górnej części wypraski; obszaru pośredniego, obejmującego wewnętrzną część dna i obszar przyległy do zewnętrznej ścianki wyrobu oraz obszar najbardziej umocniony, występujący przy wewnętrznej powierzchni ścianki wyrobu. Niniejsze badania dla przyjętych różnych kształtów stempli (rys. 1*a÷d*) potwierdziły te rozważania. Szczególnie zniekształconą strefę siatki Lagrange'a zaobserwowano dla naczyń z miedzi wyciskanych stemplem stożkowym oraz płaskim.

W badaniach uzyskano także zbiorcze wykresy zmian sił nacisku P_w w funkcji przemieszczenia Δh oraz względnego przemieszczenia $\Delta h/h_0$ (czyli odkształcenia dna wypraski ε_h) dla różnych kształtów stempli. Przedstawiono je odpowiednio na rys. 2*a* i 2*b* dla modelowania komputerowego i eksperymentu. Charakter zmian sił nacisku jest podobny.

Początkowo widoczna (rys. 2a i 2b) jest faza spęczania wsadu do momentu oparcia się materiału o ścianki pojemnika oraz faza wypełniania kotliny odkształcenia, w czasie których występuje silny wzrost siły nacisku (dla $\varepsilon_h = 0.25$). W trakcie kolejnej fazy wyciskania zasadniczego siła się stabilizuje i ma w przybliżeniu wartość stała. Proces wyciskania przeciwbieżnego w badaniach zakończono w momencie, gdy grubość denka osiągnęła wartość grubości ścianki wypraski z miedzi ($\varepsilon_h = 0,69$), gdyż wtedy zaczyna się ostatnia faza procesu, w czasie której następuje gwałtowny i niekontrolowany wzrost siły wraz ze wzrostem ε_h . We wszystkich przypadkach (różnych kształtów stempli) dla $\varepsilon_h = 0,69$ rejestrowano maksymalne wartości sił nacisku, które - oprócz wyciskania stemplem płaskim - w eksperymencie były zawsze wyższe niż w symulacji (różnice wyniosły 7÷17%). Najbardziej dynamiczny wzrost siły nacisku w funkcji względnego przemieszczenia zaobserwowano w badaniach doświadczalnych wyciskania stemplem płaskim. W tym przypadku zarejestrowano także maksymalną wartość siły przy $\varepsilon_h = 0,69$ (około 493 kN).

Podsumowanie

Na podstawie przeprowadzonych badań wyciskania przeciwbieżnego na zimno wyprasek z miedzi z użyciem stempli o różnych kształtach i założonych odkształceniach względnych: dna wypraski $\varepsilon_h = 0,69$; przekroju $\varepsilon_A = 0,67$ oraz zastępczym $\varepsilon = 1,1$, stwierdzono, że utworzony numeryczny model 2D prawidłowo opisuje proces wyciskania przeciwbieżnego wyprasek na zimno, co potwierdziły pomyślnie przeprowadzone badania doświadczalne. Niezależnie od kształtu stempla, siła wyciskania wzrasta wraz ze wzrostem przemieszczenia Δh oraz względnego przemieszczenia $\Delta h/h_0$ (czyli odkształcenia dna wypraski ε_h).

LITERATURA

- Gołowin W.A., Mitkin A.N., Rieznikow A.G. "Wyciskanie metali na zimno". Warszawa: WNT, 1975.
- Kuczyński K., Erbel E. "Obróbka plastyczna laboratorium". Warszawa: Wydawnictwa Politechniki Warszawskiej, 1984.
- Muzykiewicz W., Rękas A. "Analiza numeryczna odkształceń materiału i sił w procesie wyciskania przeciwbieżnego cienkościennych elementów rurowych". *Rudy i Metale Nieżelazne*. R. 49, nr 10–11 (2004): s. 542÷545.
- Farhoumand A., Ebrahimi R. "Analysis of forward-backwardradial extrusion process". *Materials and Design*. Vol. 30, No. 6 (2009): pp. 2152÷2157.
- Plancak M., Brameley M., Osman A. F. "Non-conventional cold extrusion". *Journal of Materials Processing Technology*. Vol. 34, No. 1–4 (1992): pp. 465÷472.
- Yang D.Y., Kim K.J. "Design of processes and products through simulation of three-dimensional extrusion". *Journal of Materials Processing Technology*. Vol. 191, No. 1–3 (2007): pp. 2-6.
- Thomas P. "Badanie i analiza zmian sił nacisku przy wyciskaniu przeciwbieżnym wyprasek z miedzi". *Eksploatacja i Niezawodność*. nr 2 (2003): s. 63÷65.
- Žmudzki A., Kuziak R., Papaj M., Pietrzyk M. "Identification of friction model in extrusion". *Obróbka Plastyczna Metali*. R. 15, nr 2 (2004). s. 69÷78.
- Shatermashhadi V., Manafi B., Abrinia K., Faraji G., Sanei M. "Development of a novel method for the backward extrusion". *Materials and Design*. Vol. 62 (2014): pp. 361÷366.
- Chang Ch., Lin J., Siao Ch.-P. "Effects of temperature and grain size on combined micro forward and backward extrusion of copper". *Steel Research International*, special edition: 14th International Conference Metal Forming (2012): pp. 467;470.
- Wang M., Zhang Y., Huang D., Liu X. "Numerical simulation of upsetting-extruding process of dispersion strengthened copper welding electrode". *Transactions of Nonferrous Metals Society* of China. Vol. 17, No. 3 (2007): pp. 449÷454.
- Geisdörfer S., Rosochowski A., Olejnik L., Engel U., Richert M., "Micro-extrusion of ultrafine grained copper". *International Journal of Material Forming*. Vol. 1, No. 1 (2008): pp. 455÷458.
- Chan W., Fu M. W., Yang B. "Study of size effect in microextrusion process of pure copper". *Materials and Design*. Vol. 32, No. 7 (2011). pp. 3772÷3782.
- Bazaz B., Zarei-Hanzaki A., Fatemi-Varzaneh S. "Hardness and microstructure homogeneity of pure copper processed by accumulative back extrusion". *Material Science and Engineering A*. Vol. 559 (2013): pp. 595–600.
- 15. Yi L., Dong Y., Lin M., Zhang L., Wang X. "Prediction on extrusion force in copper-chromium alloy extrusion processing based on projection pursuit regression". 2013 International Conference on QR2MSE (2013): pp. 1181-1183.
- Hosseini S.H., Abrinia K., Faraji G. "Applicability of a modified backward extrusion process on commercially pure aluminum". *Materials & Design.* Vol. 65 (2015): pp. 521÷528.
- Biba N., Stebunov S., Vlasov A. "Material forming simulation environment based on QFORM3D software system". *Steel Research International.* Vol. 79 (2008): pp. 611÷616.
- Miłek T., Kowalik B., Kuliński B. "Evaluation of the possibility of performing cold backward extrusion of axisymmetric thin-walled aluminium die stampings with square section". *Archives of Metallurgy and Materials*. Vol. 60, No. 4 (2015): pp. 3043÷3049.
- 19.Mazurkiewicz A., Kocur L. "Obróbka plastyczna laboratorium". Radom: Wydawnictwo Politechniki Radomskiej, 2001.