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In the paper was pointed possibility to evaluate critical state 
of bridge under travelling loading, applying uniform criterion 
for geometrical changeability and instability of structure and 
3D-time space method modelled by Finite Differences (FD). 
The both numerical methods are formulated by present au-
thor. In the above criterion is used value of main determinant 
of dynamical stiffness matrix for bridge or even for task, 
when loading is travelling beyond span. Results show effica-
cy of the method and influence of some parameters. 
KEYWORDS: dynamics, 3D-time space, finite differences, 
bridge, critical state 
 

Work is a major step in the study of space-time 
applications (hereinafter: CzP (from Polish letters) and a 
uniform criterion - formulated by the author - for the analysis 
of critical states of the structure. A broader view of the 
development of the application of the CzP for the dynamic 
analysis of various structures was presented during the 
previous International School of Computer Aided Design, 
Manufacturing and Operation [17] and in the author's 
publications in the LSCE conference books. 

In the mentioned method, as the fourth - time is added to 
the three dimensions for description of the task. A major 
contribution to the application of the CzP for mechanical 
tasks was made by: Z. Kączkowski [4-6], who introduced the 
formalism of the finite element method, as well as his 
collaborators [17], who used the CzP in a different 
approach. According to this concept, they made examples 
of rather simple technical tasks. Of course, their research 
was preceded by a series of works by other authors. 

A breakthrough in this area was a doctorate, R. Szmit’s 
[20]. There, to analyze the behavior of the high building, the 
author used a numerical approach using CzP along with the 
Finite Difference Method (FDM). It turned out to be fully 
effective. The only difficulty was the proper selection of the 
so-called time step. Ultimately, this approach was named 
3D-TSM (3D-time space method). 

Almost parallel to the works of R. Szmit, the author of this 
article and the originator of the method made numerous 
examples concerning other engineering structures - mobile 
loads on bridges, roads and airport runways. He tested bar 
and plate models.  

Some tasks were calculated - as housework (2017) –  by 
students of structural theory (A. Franus, J. Kutyna, J. 
Rawiak, Ł. Rogula and T. Tarabasz), using commercial 

 
 

   * Prof. dr hab. inż. Jan B. Obrębski (jobrebski@poczta.onet.pl) - retired 
full Professor of Warsaw University of Technology 

programs available at the Faculty of Civil Engineering of the 
Warsaw University of Technology. This gave an assessment 
of the effectiveness of the method and quality of results for 
the bridge with a cross-section from fig. 1. 

 

          

          

 
 
Fig. 1. Analyzed cross-section of a steel bridge, close to the real 
one [17, 18] 

 
The calculations made by students were burdened with 

errors, therefore the author undertook extensive work aimed 
at obtaining correct results, which will be published 
separately. After adjusting the scope of work entrusted to 
students, calculations were carried out for masses of 20 t 
and 100 t, moving at different speeds on the span: L = 50, 
60, 70, 80, 90 and 100 m. Also the influence of the girder 
division density on the sections n= 8 or n = 10 was 
estimated, too. A side effect of this research is this work, 
focused on the critical states of the dynamics of the bridge 
with the cross-section shown in fig. 1, with assumptions 
similar to those given to students. The basic tools used were 
the following: a uniform criterion for assessing geometrical 
variability and loss of structural stability (JK GZ + US (from 
Polish letters) [9-11, 14-16] and 3D-TSM [12, 13, 17]. 

 
Uniform criterion (JK GZ + US (from Polish letters) 

 
For the examination of the value of the Main Determinant 

(MD) of the stiffness matrix (K, (6)1) attention was drawn in 
the book [1], where was corroborated, that: “in the numerical 
calculations, the matrix value of the system coefficients of 
equilibrium equations of all nodes must be different from 
zero (...)”. “Otherwise, this means geometrical variation(GV) 
of the bar system”. This publication underlined the time-
consuming nature of the method. It is reported that the 
analysis of the 238 knots structure and 792 bars in the 
program written in ALGOL 60 took 90 minutes (in 1970). 

Currently, it can be stated that this is a strict method, the 
most ingenious and effective, taking as a measure the zero 
value MD of the matrix K of the system, where Δ = det[K] = 
0 indicates GV or loss of stability. This condition was used 
by the author in WDKM and KMT programs [8, 2] for 
numerical verification, in two stages, GV of bar structures 
with any combination of rigid and articulated nodes. At the 
first stage, the computer checked, in the local sense, the 
postulates specified in the dissertation [8] and cited in book 
[2]. In the second stage, already after completion of the 
matrix K, during determining the unknowns by the method of 
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subsequent Gaussian elimination,MD values were 
calculated according to the formula [7]: 

 

Δ=det[K]= K11 K1
22 K2

33 .......Kl-1
ll.......Kn-1

nn              (1) 
 
It is the product of words standing on the main diagonal 

modified after n elimination of the stiffness matrix, in the row 
with the number n (with some limitations - see [8]). 

It should also be pointed out that in the case of analytical 
solutions formulated by Euler, the critical force was 
determined by equating to zero one expression obtained on 
the basis of differential equation and boundary conditions. A 
similar procedure was used to determine (critical) natural 
frequencies [3]. Vlasov also used the equation to zero of the 
determinant obtained on the basis of the system of three 
differential equations (see among others [9, 10]). 

Also in the handbook [9] an example is given to 
determine - with a uniform criterion - a critical condition for a 
bar loaded with longitudinal force P and oscillating with the 
frequency of vibrations ω. Further, in papers [15, 16], 
examples of various combinations of longitudinal and 
transverse loads resulting in the critical state of the bar were 
cited, and critical load limits and critical boundary surfaces 
were determined. 

 
Differential equations used 

 
In these tasks and in the doctorate of R. Szmit, the very 

general motion equations given in the manual [9] were used. 
It is a system of four differential equations of the second and 
fourth order, with derivatives relative to the coordinate η, 
calculated along the length of the beam, for the twisting 
angles and three displacements defined relative to the axis 
of the 3D reference system and time. In the general case, 
these equations are related to each other by displacements 
νi (longitudinal, transverse) and torsion angle Θ counted 
around with regard o the longitudinal axis of the bar. They 
describe both free and forced vibrations as well as their 
interaction the surrounding center (interaction), including 
ground, air and water. 

These general motion equations were initially developed 
for the theory of thin-walled bars. This theory includes 
statics, dynamics and second order theory, including the 
stability of a single bar. Prismatic  bars may in this theory 
have any cross-sections, consisting of several materials, 
open and closed, and also have different boundary 
conditions defined. The surrounding medium can float the 
bar at a certain speed. Due to such assumptions, the theory 
is used in many tasks. 

Works [15-17] show that the set of traffic equations for 
the bridge girder can be significantly simplified, omitting 
many words. This is due to the specificity of the task. In this 
way, there were used only two equations independent of 
each other, describing bending ν3 and twisting Θ (the marks 
are consistent with the works [9, 10, 18]: 
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Differential equations of motion for bridge loads 

 
It was used to describe the task the CzP in numerical 

version 3D-TSM using MRS, too. This allows obtaining a 
bridge response to practically any mobile loads, and at the 
same time showing the deformations of the system in each 
of the considered time moments [17]. It was assumed that 
the bridge is a thin-walled beam with a length L, divided into 

n sections of dimension a = Δη = L/n, with partition points 
with consecutive numbers i. The beam deflection line is 
defined in m subsequent time moments denoted  with 
numbers t. 

Two differential equations of motion (2) and (3) were 
formally transformed to finite differences operators (4) and 
(5), replacing individual derivatives, including partial ones, 
with their finite differences equivalents [10]. The lower 
indices, separated by a comma, indicate the current point in 
space-time, marked with the index (t, i). The same point and 
division of the beam in the previous moment were marked 
(t-1, i), and for the next (t+1, i). The vertical deflection of the 
beam was marked as w = ν3. After multiplication of equation 
(2) by a4/EI2 and equations (3) by a4/EIin and after 
rearrangement of words, independent differential equations 
of motion were obtained: for bending in the vertical plane (4) 
and for twisting (5): 
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(5) 

 
Symbols Ki and Gi are coefficients [18]. Three lines of 

these patterns describe the next moments of time. 
 

Differential dynamic bridge stiffness matrix 
 
After completion of the finite difference operators (4) 

and/or (5) for all division points of the beam, a dynamic 
stiffness matrix (DSM) is obtained containing information 
about the beam scheme, speed and the position of vehicles 
on the bridge for all assumed time moments (fig. 2). The 
task is to solve the system of linear algebraic equations (6)1 

[10]. If more than one differential motion equation is used to 
describe the task, e.g. formulas (4) and (5), a difference-
matrix equilibrium equation of one node (6)3 is obtained: 
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It is then said about the Difference-Matrix Equations 

Method (DMEM) - in this case applied to space-time (see 
fig. 2). Such description was applied to a very numerically 
advanced computing system called WDKM [8]. The method 
of creating the DMS structure was given, among others in 
the works [12, 20, 17]. Space-time as a computer method 
(3D-TSM) from the numerical point of view is a two-
dimensional task [17, 18]. There, the construction 
equilibrium is considered together for all the time moments t. 

Here K as DSM [12] has the number of rows and 
columns N = l × n × m, where l is the number of motion 
equations describing the task (e.g. four or two - (4), (5)), n - 
number of beam division points, m - the number of time 
points considered, separated from each other by a time 
segment Δt. Each element of global DSM - K[N×N] is a 
traditional stiffness matrix K[w×w], where w = l × n [17, 18]. 
As the boundary conditions traditional support of the 
structure [10] is taken into account as well as the initial 
condition for t = 0 (known or equal to zero) and final 
condition (usually as the "back" difference). In work [18] two 
variants are also shown, when DSM form two equations 
describing bending (4) and twisting (5) 
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 t=1 t=2 t=3 t=4 t=5 t=6 t=7  

t=1 Kr Vr      
Q1 

t=2 Vr Kr Vr     
Q2 

t=3  Vr Kr Vr    
Q3 

t=4   Vr Kr Vr   
Q4 

t=5    Vr Kr Vr  
Q5 

t=6     Vr Kr Vr 
Q6 

t=7      Vr Kr 
Q7 

 
Fig. 2. DSM (6)1 - K and the fragments Q for the beam, when m = 7, 
n = 7, l = 1, in uniform motion. The submatrices have here 
dimensions: Kr[7×7], Vr[7×7] 

 
Examples of calculating critical states for a bridge 

 
A fictitious bridge span [18] with a cross-section from 

fig. 1 was assumed for testing critical states. It is simply 
supported and in two opposite directions there are three 
lanes for cars and a bike and pedestrian lane - 3 m wide 
each. The width of the girder is 30 m, and the height - 6 m. 
For  torsion at the ends of the span, zero revolutions and the 
freedom of deplaning were assumed. The girder in each 
task had a cross-section of a similar drawing and three 
closed circuits [17,18]. In the middle of the outer traffic belt 
(on eccentricity e = 7.5 m) is moving the weight of 20 t or 
100 t (force P = 200 kN or 1000 kN). So, the girder is 
torsined with the torque M1 = Pe. Two lengths of girder L = 
50 and 100 m were assumed. Thickness δ of its walls was 
chosen in such a way (with an accuracy of 0.01 mm) so that 
under the above force static deflection of the girder were 
less than 0.001L. 

The change of sign the Δ value for MD of DSM in the 
graphs means the critical value [18] occurred in this range of 
the parameter under test (here: load speed). The obtained 
numerical values were so large (e.g. Δ = 6.2E + p), that they 
made it impossible to draw it on diagrams. Therefore,  were 
prepared “approximate” diagrams of the values of the 
calculated power exponents p. The Δ values for twisting are 
much greater than for the bending of the girder. The size of 
the mass moving on the bridge during the calculation of Δ is 
included in its stiffness and thus in the weight of the girder 
[18]. 

 
Conclusions from previous calculations 

 
In several previous publications, cited in [17, 18], the 

deflection lines for beams were shown, over which the mass 
is moving with uniform motion and different speeds. 
Similarly, in work [13], bridge beam deflections with the 
length L = 100 m were compared. The drawings presented 
there show that above 360 km the diagrams of the 
deflection line show peculiarities (some chaos), which may 
indicate that the critical speed is exceeded. So, the full 
assessment of the task should therefore take place after 
determination of the deflection lines. 

 
Used commercial programs 

 
The examples given in [18] were carried out using the 

MS Excel 2007 program. This applies to the arrangement of 
DSM and the calculation of the value of Δ for MD and the 
drawing of graphs for it. In this respect, it is a very 
convenient tool. The calculation of the MD value for DSM 
took place in real time (immediately). However, solutions of 
systems of linear algebraic equations (6)1 - as unavailable - 

will be carried out with the help of own programs  - written 
by present author. 

 
Conclusions 
 

The examples made did not take into account many 
problems occurring in the real bridge. Nevertheless, the 
obtained tabular results and the graphs [18] prepared on 
their basis confirm the usefulness of JK GZ+US for the 
assessment of critical speeds for loads that move (not only) 
over bridges. The values of such speeds depend on the size 
of the moving mass and the span and mass of the bridge 
itself. The barrier in planning the size of the task (the 
number of nodes in the CzP) is the computer's ability to 
remember large numbers. 
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