ENG FB kontakt

03.05.2024

Strona główna Grudzień 2015 Charakterystyka porowatych powłok otrzymanych na niobie i stopie Ti-Nb-Zr (TNZ) w procesie elektrolitycznego utleniania plazmowego (PEO)

Charakterystyka porowatych powłok otrzymanych na niobie i stopie Ti-Nb-Zr (TNZ) w procesie elektrolitycznego utleniania plazmowego (PEO)

Characteristics of porous biocompatible coatings obtained on Niobium and Titanium-Niobium-Zirconium (TNZ) alloy by Plasma Electrolytic Oxidation

Krzysztof Rokosz, Tadeusz Hryniewicz   |   09-11-2015

Mechanik nr 12/2015 - Wersje autorskie artykułów ze Szkoły Naukowej Obróbek Erozyjnych 2015 zamieszczone na płycie CD

STRESZCZENIE: Elektrolityczne utlenianie plazmowe (POE) zastosowano do biomateriałów metalowych, takich jak niob i stop Ti-Nb-Zr (TNZ). Obróbkę prowadzono w elektrolicie kwasu H3PO4 z dodatkiem azotanu miedzi. Otrzymane porowate powłoki badano z użyciem SEM/EDX. Badania uzyskanych powłok wykazały, że są one wzbogacone w jony miedzi (ponad 3,5 %mas.), podczas gdy Cu/P oraz Cu/(P+osnowa) wynosiły odpowiednio 0,2 i 0,07. Taka charakterystyka sprzyja poprawie biokompatybilności badanego biomateriału.

SŁOWA KLUCZOWE: niob, stop Ti-Nb-Zr (TNZ), elektrolityczne utlenianie plazmowe (PEO), SEM/EDX, powłoka porowata

ABSTRACT: The Niobium and Titanium-Niobium-Zirconium (TNZ) alloy biomaterials were treated by Plasma Electrolytic Oxidation (PEO) in view of getting porous surface layers. For the PEO process, a special set up was built to perform the experiments in the electrolyte composed of concentrated H3PO4, with an addition of copper II nitrate. The surface layers were studied by means of SEM and EDS methods to reveal the effects of porosity and compositions. It was found one may create porous coatings on niobium and on TNZ alloy, enriched with copper ions. Over 3.5 wt% content of copper, with Cu/P and Cu/(P+Matrix) ratios equaling to 0.2 and 0.07, respectively, may assure a better biocompatibility of the biomaterials.

KEYWORDS: Niobium, Titanium-Niobium-Zirconium (TNZ) Alloy, Plasma Electrolytic Oxidation (PEO), SEM/EDX, Porous coatings

BIBLIOGRAFIA / BIBLIOGRAPHY:

  • Simka W., Sowa M., Socha R.P., Maciej A., Michalska J., Anodic oxidation of zirconium in silicate solutions. Electrochim. Acta, 104, 518-525, 2013.
  • Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus. Electrochim. Acta, 56(24), 8962-8968, 2011.
  • Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwański K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysł Chemiczny, 90(1), 84-90, 2011.
  • Yu S., YU Z., Wang G., Han J., Ma X., Dargusch M.S., Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy. Trans. Nonferrous Met. Soc. China, 21, 573-580, 2011.
  • Sowa M., Kazek-Kęsik A., Socha R.P., Dercz G., Michalska J., Simka W., Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochim. Acta, 114, 627-636, 2013.
  • Jin F.Y., Tong H.H., Shen L.R., Wang K., and Chu P.K., Microstructural and Dielectric Properties of Porous TiO2 Films Synthesized on Titanium Alloys by Micro-Arc Discharge Oxidization. Mater. Chem. Phys., 100(1), 31-33, 2006.
  • Hryniewicz T., Karpiński T., Łukianowicz C., The evaluation of electrolytically polished surfaces. Wear, 45(3), 335-343, 1977.
  • Hryniewicz T., The solution of electropolishing problems for some particular cases. Surf. Technol., 8 (5), 37-45, 1979.
  • Hryniewicz T., Krzywe polaryzacji anodowej a proces elektropolerowania metali. Ochrona przed Korozją, 28(11-12), 273-276, 1985.
  • Hryniewicz T., Hryniewicz Z., On the solution of equation of diffusion in electropolishing, J. Electrochem. Soc., 136(12), 3767-3769, 1989.
  • Hryniewicz T., Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali. Wydawnictwo Uczelniane WSI, Koszalin, 1989.
  • Hryniewicz T., Concept of microsmoothing in the electropolishing process, Surf. Coat. Technol., 64(2), 75-80, 1994.
  • Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing process improves characteristics of finished metal surfaces. Met. Finish., 104(12), 26-33, 2006.
  • Hryniewicz T., Wstęp do obróbki powierzchniowej biomateriałów metalowych. Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin, 2007.
  • Rokicki R., Hryniewicz T., Nitinol Surface Finishing by Magnetoelectropolishing. Trans. Inst. Met. Finish., 86, 280-285, 2008.
  • Rokicki R., Hryniewicz T., Rokosz K., Modifying Metallic Implants with Magnetoelectropolishing. Medical Device & Diagnostic Industry, 30(1), 102-111, 2008 (INVITED PAPER); devicelink.com/mddi.
  • Hryniewicz, T., Rokosz, K., Analysis of XPS results of AISI 316L SS electropilished and magnetoelectropolished at varying conditions. Surf. Coat. Technol., 204, 2583-2592, 2010.
  • Hryniewicz T., Konarski P., Rokosz K., Rokicki R., SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions. Surf. Coat. Technol., 205(17-18), 4228-4236, 2011.
  • Hryniewicz, T., Rokosz, K., Zschommler Sandim H.R., SEM/EDX and XPS studies of niobium after electropolishing. Appl. Surf. Sci., 263, 357-361, 2012; DOI: 10.1016/j.apsusc.2012.09.060
  • Rokosz K., Polerowanie elektrochemiczne stali w polu magnetycznym. Monografia, Wyd. Uczeln. Politechniki Koszalińskiej, Koszalin, 2012.
  • Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments. Mater. Lett., 62(17-18), 3073-3076, 2012.
  • Rokicki R., Hryniewicz T., Enhanced oxidation-dissolution theory of electropolishing. Trans. Inst. Met. Finish., 90(4), 188-196, 2012.
  • Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing. Mater. Chem. Phys., 122(1), 169-174, 2010.
  • Hryniewicz T., Rokosz K., Polarization Characteristics of Magnetoelectropolishing Stainless Steels. Mater. Chem. Phys., 122, 169-174, 2010; DOI: 10.1016/j.matchemphys.2010.02.055
  • Hryniewicz T., Rokosz K., Micheli V., Auger/AES surface film measurements on AISI 316L biomaterial after magnetoelectropolishing. PAK (Pomiary Automatyka Kontrola), 57(6), 609-614, 2011.
  • Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Mater. Lett., 83, 69-72, 2012; DOI: 10.1016/j.matlet.2012.06.010
  • Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials, 8, 205-215, 2015; DOI: 10.3390/ma8010205.
  • Rokicki R., Hryniewicz T., Pulletikurthi C., Rokosz K., Munroe N., Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices. J. Mater. Eng. Perform., 24(4), 1634-1640, 2015.
  • Rokosz K., Hryniewicz T., Raaen S., Valiček J., SEM/EDX, XPS, corrosion and surface roughness characterization of AISI 316L SS after electrochemical treatment in concentrated HNO3. Techn. Gazette, 22(1), 125-131, 2015.
  • Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation studies of TNZ and Ti2448 biomaterials after magnetoelectropolishing. Advances in Materials Science, 14_3(41), 34-44, 2014.
  • Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corrosion Methods and Materials, 61(2), 57-64, 2014.
  • Hryniewicz T., Rokosz K., Rokicki R., Magnetic Fields for Electropolishing Improvement: Materials and Systems. Intern. Letters of Chemistry, Physics and Astronomy, 4, 98-108, 2014; http://www.ilcpa.pl/wp-content/uploads/2013/10/ILCPA-4-2014-98-1081.pdf
  • Hryniewicz T., Rokosz K., Highlights of magnetoelectropolishing. Frontiers in Materials: Corrosion Research, 1(3), 1-7, 2014 (Inaugural Article); DOI: 10.3389/fmats.2014.00003
  • Rokosz K., Hryniewicz T., Rzadkiewicz S., Raaen S., High-Current-Density Electropolishing (HDEP) of AISI 316L (EN 1.4404) Stainless Steel. Techn. Gazette, 22(2), 415-424, 2015.
  • Rokosz K., Hryniewicz T., Lukeš J., Šepitka J., Nanoindentation studies and modeling of surface layers on austenitic stainless steels by extreme electrochemical treatments. Surf. Interf. Anal., 47(6), 643-647, 2015.
  • Rokosz K., Hryniewicz T., Rzadkiewicz S., XPS study of surface layer formed on AISI 316L after High-Current Density Electropolishing. Solid State Phenomena, 27, 155-158, 2015.
  • Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after High-Current-Density Electropolishing. Surf. Coat. Technol., 2015 (to appear); online http://dx.doi.org/10.1016/j.surfcoat.2015.06.022
  • Jelinek M., Kocourek T., Remsa J., Weiserovác M., Jurek K., Mikšovský J., Strnad J., Galandáková A., Ulrichová J., Antibacterial, cytotoxicity and physical properties of laser — Silver doped hydroxyapatite layers. Mater. Sci. Eng.: C, 33(3), 1242–1246, 2013.
  • Mishra G., Dash B., Pandey S., Mohanty P.P., Antibacterial actions of silver nanoparticles incorporated Zn–Al layered double hydroxide and its spinel. J. Environ. Chem. Eng., 1(4), 1124–1130, 2013.
  • Rajendrana A., Pattanayak D.K., Silver incorporated antibacterial, cell compatible and bioactive titania layer on Ti metal for biomedical applications. RSC Advances, 106(4), 61444-61455, 2014.
  • Trujillo N.A., Oldinski R.A., Mad H., Bryers J.D., Williams J.D., Popat K.C., Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater. Sci. Eng.: C, 32(8), 2135–2144, 2012.
  • Xiangyu Zhang, Xiaobo Huang, Yong Ma, Naiming Lin, Ailan Fan, Bin Tang, Bactericidal behavior of Cu-containing stainless steel surfaces. Appl. Surf. Sci., 258, 10058–10063, 2012.
  • Xiaohong Yao, Xiangyu Zhang, Haibo Wu, Linhai Tian, Yong Ma, Bin Tang, Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl. Surf. Sci., 292, 944–947, 2014.
  • Hempel F., Finke B., Zietz C., Bader R., Weltmann K.-D., Polak M., Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf. Coat. Technol., 256, 52-58, 2014.
  • Stranak V., Wulff H., Ksirova P., Zietz C., Drache S., Cada M., Hubicka Z., Bader R., Tichy M., Helm C.A., Hippler R., Ionized vapor deposition of antimicrobial Ti-Cu films with controlled copper release. Thin Solid Films, 550, 389-394, 2014.
  • Kredl J., Drache S., Quade A., Polak M., Müller S., Peglow S., Hippler R., Kolb J.F., DC Operated Air Plasma Jet for Antimicrobial Copper Coatings on Temperature Labile Surfaces. IEEE Trans. Plasma Sci., 42, 2756-2757, 2014.

DOI: http://dx.doi.org/10.17814/mechanik.2015.12.530

Pobierz plik / download

Krzysztof Rokosz, Tadeusz Hryniewicz: Charakterystyka porowatych powłok otrzymanych na niobie i stopie Ti-Nb-Zr (TNZ) w procesie elektrolitycznego utleniania plazmowego (PEO) (Characteristics of porous biocompatible coatings obtained on Niobium and Titanium-Niobium-Zirconium (TNZ) alloy by Plasma Electrolytic Oxidation) (PDF, ~0,7 MB)

Strona główna Grudzień 2015 Charakterystyka porowatych powłok otrzymanych na niobie i stopie Ti-Nb-Zr (TNZ) w procesie elektrolitycznego utleniania plazmowego (PEO)

Zamów NEWSLETTER

Kalendarium wydarzeń

Pn
Wt
Śr
Cz
Pt
So
Nd

Nasze propozycje

Metrologia geometryczna powierzchni technologicznych. Zarysy kształtu – Falistość – Mikro- i nanochropowatość.
Stanisław Adamczak

Metrologia geometryczna powierzchni technologicznych. Zarysy kształtu – Falistość – Mikro- i nanochropowatość.

Wydawnictwo Naukowe PWN

"Metrologia geometryczna powierzchni technologicznych" to kompendium poświęcone tematyce pomiarów i analizy...

Układy dynamiczne w modelowaniu procesów przyrodniczych, społecznych, technologicznych
Jacek Banasiak, Katarzyna Szymańska-Dębowska

Układy dynamiczne w modelowaniu procesów przyrodniczych, społecznych, technologicznych

Wydawnictwo Naukowe PWN

"Układy dynamiczne" to podręcznik związany z analizą układów dynamicznych, którą można zastosować w różnych...

Matematyczny wszechświat. Od Pitagorasa do Plancka
Joel L. Schiff (Tłum.: W. Sikorski)

Matematyczny wszechświat. Od Pitagorasa do Plancka

Wydawnictwo Naukowe PWN

"Matematyczny wszechświat" to wciągająca opowieść, która odkrywa przed czytelnikami prawa matematyczne...

Tarcie i smarowanie w procesach kształtowania blach
Tomasz Trzepieciński

Tarcie i smarowanie w procesach kształtowania blach

Wydawnictwo Naukowe PWN

W książce Tarcie i smarowanie w procesach kształtowania blach przedstawiono specyfikę zjawiska tarcia...

Nasi partnerzy