Advanced methods of determination of friction coefficient in the machining process
Zaawansowane metody wyznaczania współczynnika tarcia w procesie skrawania *
ABSTRACT: In this article, several possibilities for integrating AI methods with FEM-based modelling for coefficient of friction (COF) prediction are reviewed and discussed. In particular, the implementation of a Grey-Box model and selected regression testing methods is presented. Results of integrating a Python interface with the FEM DEFORM package for predicting componential cutting forces and cutting temperatures using estimated COF values are provided. The performance of different friction models implemented in FEM and SPH simulation packages is compared. New trends and future research directions are also outlined.
KEYWORDS: artificial intelligence, FEM modeling, coefficient of friction (COF), Grey-Box model, friction models, cutting forces and temperature
STRESZCZENIE: W artykule omówiono możliwości integracji metod sztucznej inteligencji (AI) z modelowaniem metodą elementów skończonych (FEM) do prognozowania wartości współczynnika tarcia. W szczególności przedyskutowano zastosowanie tzw. modelu szarej skrzynki (Grey-Box) i kilku metod testowania regresyjnego, a podano wyniki integracji interfejsu Pythona z programem symulacyjnym DEFORM dotyczące sił skrawania i temperatury, wykorzystujące wyniki prognozy współczynnika tarcia. Porównano efekty zastosowania różnych modeli tarcia w metodach FEM i SPH. Omówiono przyszłościowe kierunki badań.
SŁOWA KLUCZOWE: sztuczna inteligencja, modelowanie MES (FEM), współczynnik tarcia (COF), model szarej skrzynki, modele tarcia, siły tnące i temperatura skrawania
BIBLIOGRAFIA / BIBLIOGRAPHY:
[1] W. Grzesik, Podstawy skrawania materiałów konstrukcyjnych, PWN, 2018.
[2] J. Rech, Ch. Claudin, P. Polly, C. Courbon, New aspects of metrology of frictional behaviour in metal cutting (Nowe aspekty pomiaru tarcia w skrawaniu metali), „Mechanik”, 11(2016): 1751–1753, DOI: 10.17814/mechanik.2016.11.520.
[3] W. Grzesik, J. Rech, Methods and devices for measuring metal cutting friction and wear, „Mechanik”, 2 (2019): 85–89.
[4] S.N. Melkote, W. Grzesik, J. Outeiro, J. Rech, V. Schulze, H. Attia, P.J. Arrazola, R. M’Saoubi, Ch. Saldana, Advances in material and friction data for modelling of metal machining, CIRP Annals, 66/2/2017, 731–754, https://doi.org/10.1016/j.cirp.2017.05.002.
[5] W. Grzesik, J. Rech, Influence of machining conditions on friction in metal cutting process – A review (Wpływ warunków obróbki na tarcie w procesie skrawania metali – przegląd literatury), „Mechanik”, 4/2019, 242–248, DOI: https://doi.org/10.17814/mechanik.2019.4.33.
[6] W. Grzesik. A. Ruszaj, Hybrydowe metody obróbki materiałów konstrukcyjnych, PWN, 2021.
[7] A. Wolf, N.K. Bandaru, M. Dienwiebel, H.Ch. Möhring, A novel grey-box based friction model for a wide range of machining conditions, Wear, August 2025, Wear 580-581:206295, DOI: 10.1016/j.wear.2025.206295.
[8] F. Ducobu, O. Pantalé, B. Lauwers, Predictive 3D modelling of free oblique cutting introducing an ANN-based material flow law with experimental validation over a wide range of conditions, Int. J. Adv. Manuf. Technol., 131 (2024): 921–934, https://doi.org/10.1007/s00170-024-12956-7.
[9] Czym jest testowanie metodą Grey-Box?, https://www.imperva.com/learn/application-security/gray-box-testing/.
[10] W. Grzesik, K. Żak, A. Zawada-Tomkiewicz, Analiza i modelowanie powierzchni wytwarzanych w obróbce ubytkowej, PWN, 2024.
[11] Interfejs Pytona, https://www.google.com/search?q=interfejs+Pythona&oq=interfejs+Pythona&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQIRigATIHCAIQIRifBTIHCAMQIRifBTIHCAQQIRifBdIBCDU3NDRqMGo3qAIAsAIA&sourceid=chrome&ie =UTF-8.
[12] M. Afrasiabi, J. Saelzer, S. Berger, I. Iovkov, H. Klippel, M. Röthlin, A. Zabel, D. Biermann, K. Wegener, A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients, Metals 2021, 11, 1683, https://doi.org/10.3390/met11111683.
[13] W. Grzesik, Progress in modelling and simulation of the machining process – part II: Mesh-free modelling and simulation (Postęp w modelowaniu i symulacji procesu skrawania – część II: Bezsiatkowe modelowanie i symulacja), „Mechanik”, 4/2024, DOI: https://doi.org/10.17814/mechanik.2024.4.6.
[14] T. Reeber, J. Wolf, H.-Ch. Mohring, A Data-Driven Approach for Cutting Force Prediction in FEM Machining Simulations Using Gradient Boosted Machines, J. Manuf. Mater. Process. 2024, 8, 107, https://doi.org/10.3390/jmmp8030107.
[15] M. Storchak, O. Melnyk, Y. Stepchyn, O. Shyshkova, A. Golubovskyi, O. Vozniy, Effect of Friction Model Type on Tool Wear Prediction in Machining, Machines, 13(10)/2025, 904; https://doi.org/10.3390/machines13100904.
[16] Bootstrap (statystyka), https://pl.wikipedia.org/wiki/Bootstrap_(statystyka).
[17] P. Menesklou, T. Sinn, H. Nirschl, M. Gleiss, Grey Box Modelling of Decanter Centrifuges by Coupling a Numerical Process Model with a Neural Network, Minerals, 11/2021, 755. https://doi.org/10.3390/min11070755.
[18] XGBoost, https://www.geeksforgeeks.org/machine-learning /xgboost/
[19] L. Sterle, F. Pušavec, M. Kalina, Determination of friction coefficient in cutting processes: comparison between open and closed tribometers, Procedia CIRP 82 (2019) 101–106, The 17th CIRP Conference on Modelling of Machining Operations, 10.1016/j.procir.2019.04.159.
DOI: https://doi.org/10.17814/mechanik.2026.1.1
* Artykuł recenzowany



















